Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cyl...Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank.Input/Output data is generated for the three interacting tank process.It is approximated as Integer First Order Plus Dead Time system(IFOPDT)and Fractional First Order Plus Dead Time system(FFOPDT).Smith predictor based fractional order Proportional Integral controller and Integer order Proportional Integral controller is designed for the IFOPDT and FFOPDT model using frequency response technique and their closed loop performance indices are compared and tabulated.The servo and regulatory responses are simulated using Matlab/Simulink.展开更多
In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid...In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.展开更多
文摘Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank.Input/Output data is generated for the three interacting tank process.It is approximated as Integer First Order Plus Dead Time system(IFOPDT)and Fractional First Order Plus Dead Time system(FFOPDT).Smith predictor based fractional order Proportional Integral controller and Integer order Proportional Integral controller is designed for the IFOPDT and FFOPDT model using frequency response technique and their closed loop performance indices are compared and tabulated.The servo and regulatory responses are simulated using Matlab/Simulink.
文摘In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.