The Phased Array Feed(PAF)is considered as one of the next generation receivers for radio telescopes,which can significantly enlarge the instantaneous Field-of-View of large aperture single dish radio telescopes and e...The Phased Array Feed(PAF)is considered as one of the next generation receivers for radio telescopes,which can significantly enlarge the instantaneous Field-of-View of large aperture single dish radio telescopes and enable more flexible observing configurations.Study efforts on PAF development for radio telescopes have been made for more than two decades and have become more and more applicable.We report the development of an ambient-temperature 19 element L-band PAF system and the experimental results including its far field beam pattern and system temperature measurement,which achieve the expectations.Implementing the aperture array beam-forming method,we demonstrate a wide-field Galactic HI observations in the radio camera mode.The results indicate that this system might be applicable for strong Galactic transient detections.This system could be directly equipped to large telescopes like the Five-hundred-meter Aperture Spherical radio Telescope(FAST)and FAST array in the future.展开更多
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ...In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.展开更多
The simulation program developed by the "Models of Networked Analysis at Regional Centers"(MONARC) project is a powerful and flexible tool for simulating the behavior of large scale distributed computing sys...The simulation program developed by the "Models of Networked Analysis at Regional Centers"(MONARC) project is a powerful and flexible tool for simulating the behavior of large scale distributed computing systems,In this study,we further validate this simulation tool in a large-scale distributed farm computing system.We also report the usage of this simulation tool to identify the bottlenecks and limitations of our farm system.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected ...We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.展开更多
Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branch...Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.展开更多
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first obser...Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).展开更多
Precipitation of multiple strong nanoprecipitates is crucial for the development of ultrahigh-strength structural materials with a strength of 2.5 GPa or above.Nevertheless,the ductility usually loses rapidly with str...Precipitation of multiple strong nanoprecipitates is crucial for the development of ultrahigh-strength structural materials with a strength of 2.5 GPa or above.Nevertheless,the ductility usually loses rapidly with strength due to limited dislocation mobility and high cracking tendency if coarse non-deformable precipitates are employed.Herein,we report a 2.5 GPa maraging steel strengthened by an ultrahigh den-sity of intermeshed shearable nanostructures consisting of Ni(Al,Fe)nanoprecipitates and Mo-rich(∼30 at.%)disordered clusters,both of which assume coherent interfaces.The fully coherent B2-Ni(Al,Fe)par-ticles precipitate in an extremely fast fashion,effectively accelerating local aggregation of low-diffusivity Mo atoms and promoting the formation of Mo-rich clusters surrounding them.This elemental partition was found to be further enhanced by Co addition via depleting both residual Al and Mo within the ma-trix,leading to the formation of copious yet fine intermeshed nanostructures.During plastic deformation,the interlocked nanostructures not only enhance local cutting stress by combining long-range elastic and short-range chemically ordering effects but also improve dislocation activity and resist shear-induced plastic instability.The multiple shearable nanostructures endow decent ductility(>6%)of the 2.5 GPa steel,suggesting a new paradigm for designing ultrastrong steels.展开更多
The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhab...The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.展开更多
From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.Th...From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.展开更多
The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonan...The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.展开更多
In the metallic components fabricated by the emerging selective laser melting(SLM)technology,most strategies used for strengthening the materials sacrifice the ductility,leading to the so-called strengthductility trad...In the metallic components fabricated by the emerging selective laser melting(SLM)technology,most strategies used for strengthening the materials sacrifice the ductility,leading to the so-called strengthductility trade-off.In the present study,we report that the strength and ductility of materials can be enhanced simultaneously by introducing nanoparticles,which can break the trade-off of the metallic materials.In the case of in-situ nano-TiB_(2)decorated AlSi10Mg composites,the introduced nanoparticles lead to columnar-to-equiaxed transition,grain refinement and texture elimination.With increasing content of nanoparticles,the strength increases continually.Significantly,the ductility first increases and then decreases.Our results show that the ductility is controlled by the competition between the crack-induced catastrophic fracture and ductile fracture associated with dislocation activities.The first increase of ductility is mainly attributed to the suppression of crack-induced catastrophic fracture when TiB_(2)nanoparticles present.With the further increase of TiB_(2)nanoparticles,the subsequent decrease of ductility is mainly controlled by dislocation activities.Thus,the materials will exhibit the optimum strength and ductility combination in a certain range of TiB_(2)nanoparticles.This study clarifies the physical mechanism controlling ductility for nano-TiB_(2)decorated Al Si10Mg composites,which provides the insights for the design of structural materials.展开更多
To address the main stumbling-block of bulk metallic glasses (BMGs), i.e., room temperature brittleness, designing BMG matrix composites has been attracted extensive attention. Up to date, BMG composites in various ...To address the main stumbling-block of bulk metallic glasses (BMGs), i.e., room temperature brittleness, designing BMG matrix composites has been attracted extensive attention. Up to date, BMG composites in various alloy systems have been successfully developed by forming crystalline phases embedded in the amorphous matrix through either ex-situ or in-situ methods. In this paper, a brief review of our recent work in this topic will be presented and the novel approaches to improving composite formability and mechanical properties will also be highlighted. The main purpose of this manuscript is not to offer a comprehensive review of all the BMG composites, but instead focuses will be placed on illustrating recently developed advanced BMG composites including Fe-based BMG composite with no metalloids, AI-based BMG composite and BMG composites reinforced by the TRIP (transformation-induced plasticity) effects. The basic ideas and related mechanisms underlying the development of these novel BMG composites will be discussed.展开更多
In the present study,we selected solutes to be added to the Cr Co Ni medium-entropy alloy(MEA)based on the mismatch of self-diffusion activation energy(SDQ)between the alloying elements and constituent elements of the...In the present study,we selected solutes to be added to the Cr Co Ni medium-entropy alloy(MEA)based on the mismatch of self-diffusion activation energy(SDQ)between the alloying elements and constituent elements of the matrix,and then investigated their grain growth behavior and mechanical properties.Mo and Al were selected as the solutes for investigation primarily because they have higher and lower SDQ,respectively,than those of the matrix elements;a secondary factor was their higher and lower shear modulus.Their concentrations were fixed at 3 at.%each because previous work had shown these compositions to be single-phase solid solutions with the face-centered cubic structure.Three alloys were produced by arc melting,casting,homogenizing,cold rolling and annealing at various temperatures and times to produce samples with different grain sizes.They were(a)the base alloy Cr Co Ni,(b)the base alloy plus 3 at.%Mo,and(c)the base alloy plus 3 at.%Al.The activation energies for grain growth of the Cr Co Ni,Cr Co Ni-3Mo and CrCo Ni-3Al MEAs were found to be^251,~368 and^219 k J/mol,respectively,consistent with the notion that elements with higher SDQ(in this study Mo)retard grain growth(likely by a solute-drag effect),whereas those with lower values(Al)accelerate grain growth.The roomtemperature tensile properties show that Mo increases the yield strength by^40%but Al addition has a smaller strengthening effect consistent with their relative shear moduli.The yield strength as a function of grain size for the three single-phase MEAs follows the classical Hall-Petch relationship with much higher slopes(>600 MPaμm-0.5)than traditional solid solutions.This work shows that the grain growth kinetics and solid solution strengthening of the Cr Co Ni MEA can be tuned by selecting solute elements that have appropriate diffusion and physical properties.展开更多
Several body-centered-cubic(BCC)refractory high entropy alloys(HEAs),i.e.,Hf Nb Ta Ti Zr,Nb Ta Ti Zr,Hf Nb Ti Zr and Nb Ti Zr,were annealed at intermediate temperatures for 100 h,and their microstructures and aging be...Several body-centered-cubic(BCC)refractory high entropy alloys(HEAs),i.e.,Hf Nb Ta Ti Zr,Nb Ta Ti Zr,Hf Nb Ti Zr and Nb Ti Zr,were annealed at intermediate temperatures for 100 h,and their microstructures and aging behaviors were studied in detail.All these HEAs start to decompose into multiple phases at around 500°C,but reenter the single-phase region at significantly different temperatures which were determined to be 900,1000,1100 and above 1300°C for Hf Nb Ti Zr,Nb Ti Zr,Hf Nb Ta Ti Zr and Nb Ta Ti Zr,respectively.Our analysis indicates that the onset decomposition temperature in these four HEAs is closely related to the elemental diffusion rates while the ending decomposition temperature is strongly dependent on the elemental melting points.Our findings are important not only for understanding phase stability of HEAs in general,but also for adjusting processing parameters to optimize mechanical properties of these HEAs.展开更多
The absence of efficient red-emitting micrometer-scale light emitting diodes(LEDs),i.e.,LEDs with lateral dimensions of 1μm or less is a major barrier to the adoption of microLEDs in virtual/augmented reality.The und...The absence of efficient red-emitting micrometer-scale light emitting diodes(LEDs),i.e.,LEDs with lateral dimensions of 1μm or less is a major barrier to the adoption of microLEDs in virtual/augmented reality.The underlying challenges include the presence of extensive defects and dislocations for indium-rich InGaN quantum wells,strain-induced quantum-confined Stark effect,and etch-induced surface damage during the fabrication of quantum well microLEDs.Here,we demonstrate a new approach to achieve strong red emission(>620 nm)from dislocation-free N-polar InGaN/GaN nanowires that included an InGaN/GaN short-period superlattice underneath the active region to relax strain and incorporate more indium within the InGaN dot active region.The resulting submicrometer-scale devices show red electroluminescence dominantly from an InGaN dot active region at low-to-moderate injection currents.A peak external quantum efficiency and a wall-plug efficiency of 2.2%and1.7%were measured,respectively,which,to the best of our knowledge,are the highest values reported for a submicrometer-scale red LED.This study offers a new path to overcome the efficiency bottleneck of red-emitting microLEDs for a broad range of applications including mobile displays,wearable electronics,biomedical sensing,ultrahigh speed optical interconnect,and virtual/augmented reality.展开更多
基金supported by the National Key R&D Program of China under grant No.2018YFA0404703the Open Project Program of the Key Laboratory of FAST,NAOC,Chinese Academy of Sciences。
文摘The Phased Array Feed(PAF)is considered as one of the next generation receivers for radio telescopes,which can significantly enlarge the instantaneous Field-of-View of large aperture single dish radio telescopes and enable more flexible observing configurations.Study efforts on PAF development for radio telescopes have been made for more than two decades and have become more and more applicable.We report the development of an ambient-temperature 19 element L-band PAF system and the experimental results including its far field beam pattern and system temperature measurement,which achieve the expectations.Implementing the aperture array beam-forming method,we demonstrate a wide-field Galactic HI observations in the radio camera mode.The results indicate that this system might be applicable for strong Galactic transient detections.This system could be directly equipped to large telescopes like the Five-hundred-meter Aperture Spherical radio Telescope(FAST)and FAST array in the future.
文摘In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.
文摘The simulation program developed by the "Models of Networked Analysis at Regional Centers"(MONARC) project is a powerful and flexible tool for simulating the behavior of large scale distributed computing systems,In this study,we further validate this simulation tool in a large-scale distributed farm computing system.We also report the usage of this simulation tool to identify the bottlenecks and limitations of our farm system.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.
基金Supported in part by National Key R&D Program of China(Grant Nos.2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(Grant Nos.11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(Grant No.U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(Grant No.758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(Grant No.894790)German Research Foundation DFG(Grant No.443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(Grant No.DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant No.B16F640076)Olle Engkvist Foundation(Grant No.200-0605)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(Grant No.160355)The Royal Society,UK(Grant Nos.DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(Grant No.DE-FG02-05ER41374)。
文摘We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.
基金supported in part by National Key Research and Development Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC,11975118,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265,12061131003)+18 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources and Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF,160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11975011,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+20 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076STFC)(United Kingdom)Suranaree University of Technology(SUT)Thailand Science Research and Innovation(TSRI)National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374)。
文摘Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).
基金This research was supported by the National Key Research and Development Program of China(nos.2022YFB3705201 and 2022YFB4602101)National Natural Science Foundation of China(nos.51971018,U20B2025,11790293,52225103,51871016,51971017,52071024,52271003)+3 种基金the Funds for Creative Research Groups of NSFC(51921001)Projects of International Cooperation and Exchanges of NSFC(nos.51961160729,52061135207)111 Project(no.BP0719004)Program for Changjiang Scholars and In-novative Research Team in University of China(no.IRT_14R05),and the Fundamental Research Funds for the Central Universities of China:FRF-MP-20-43Z(JSH),FRF-TP-22-130A1(ZXB),FRF-TP-22-001C2(WY).
文摘Precipitation of multiple strong nanoprecipitates is crucial for the development of ultrahigh-strength structural materials with a strength of 2.5 GPa or above.Nevertheless,the ductility usually loses rapidly with strength due to limited dislocation mobility and high cracking tendency if coarse non-deformable precipitates are employed.Herein,we report a 2.5 GPa maraging steel strengthened by an ultrahigh den-sity of intermeshed shearable nanostructures consisting of Ni(Al,Fe)nanoprecipitates and Mo-rich(∼30 at.%)disordered clusters,both of which assume coherent interfaces.The fully coherent B2-Ni(Al,Fe)par-ticles precipitate in an extremely fast fashion,effectively accelerating local aggregation of low-diffusivity Mo atoms and promoting the formation of Mo-rich clusters surrounding them.This elemental partition was found to be further enhanced by Co addition via depleting both residual Al and Mo within the ma-trix,leading to the formation of copious yet fine intermeshed nanostructures.During plastic deformation,the interlocked nanostructures not only enhance local cutting stress by combining long-range elastic and short-range chemically ordering effects but also improve dislocation activity and resist shear-induced plastic instability.The multiple shearable nanostructures endow decent ductility(>6%)of the 2.5 GPa steel,suggesting a new paradigm for designing ultrastrong steels.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)under Contracts Nos.(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos.(U1732263,U1832207)CAS Key Research Program of Frontier Sciences under Contract No.(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC under Contract No.(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement No(894790)German Research Foundation DFG under Contracts Nos.(443159800),Collaborative Research Center CRC 1044,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation under Contract No.(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)under Contract No.(2016.0157)The Royal Society,UK under Contracts Nos.(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy under Contracts Nos.(DE-FG02-05ER41374,DE-SC-001206)。
文摘The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.
基金financially supported by the National Key Research and Development Program of China(No.2018YFB1106302)。
文摘In the metallic components fabricated by the emerging selective laser melting(SLM)technology,most strategies used for strengthening the materials sacrifice the ductility,leading to the so-called strengthductility trade-off.In the present study,we report that the strength and ductility of materials can be enhanced simultaneously by introducing nanoparticles,which can break the trade-off of the metallic materials.In the case of in-situ nano-TiB_(2)decorated AlSi10Mg composites,the introduced nanoparticles lead to columnar-to-equiaxed transition,grain refinement and texture elimination.With increasing content of nanoparticles,the strength increases continually.Significantly,the ductility first increases and then decreases.Our results show that the ductility is controlled by the competition between the crack-induced catastrophic fracture and ductile fracture associated with dislocation activities.The first increase of ductility is mainly attributed to the suppression of crack-induced catastrophic fracture when TiB_(2)nanoparticles present.With the further increase of TiB_(2)nanoparticles,the subsequent decrease of ductility is mainly controlled by dislocation activities.Thus,the materials will exhibit the optimum strength and ductility combination in a certain range of TiB_(2)nanoparticles.This study clarifies the physical mechanism controlling ductility for nano-TiB_(2)decorated Al Si10Mg composites,which provides the insights for the design of structural materials.
基金supported in part by the National Natural Science Foundation of China (Nos. 51010001, 51371003, 51001009 and 51271212)111 Project (No. B07003)+2 种基金Program for Changjiang Scholars and Innovative Research Team in Universityfinancial support from the Fundamental Research Funds for the Central Universities (Nos. FRF-SD-12-005A and FRF-TP-11-005A)financial support from the Research Project of State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing (No. 2011Z-13)
文摘To address the main stumbling-block of bulk metallic glasses (BMGs), i.e., room temperature brittleness, designing BMG matrix composites has been attracted extensive attention. Up to date, BMG composites in various alloy systems have been successfully developed by forming crystalline phases embedded in the amorphous matrix through either ex-situ or in-situ methods. In this paper, a brief review of our recent work in this topic will be presented and the novel approaches to improving composite formability and mechanical properties will also be highlighted. The main purpose of this manuscript is not to offer a comprehensive review of all the BMG composites, but instead focuses will be placed on illustrating recently developed advanced BMG composites including Fe-based BMG composite with no metalloids, AI-based BMG composite and BMG composites reinforced by the TRIP (transformation-induced plasticity) effects. The basic ideas and related mechanisms underlying the development of these novel BMG composites will be discussed.
基金the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division,E.P.Georgethe National Nature Science Foundation of China(No.51971099)+3 种基金the open fund of State Key Laboratory for Advanced Metals and Materials(No.2018-ZD03),X.W.Liuthe National Nature Science Foundation of China(No.51975425),L.C.Zengthe open fund of State Key Laboratory of Materials Processing and Die&Mould Technology(P2019-005),H.Duthe Research and Development Program of Jiangxi Academy of Sciences(No.2020-YZD-23),Q.Hu。
文摘In the present study,we selected solutes to be added to the Cr Co Ni medium-entropy alloy(MEA)based on the mismatch of self-diffusion activation energy(SDQ)between the alloying elements and constituent elements of the matrix,and then investigated their grain growth behavior and mechanical properties.Mo and Al were selected as the solutes for investigation primarily because they have higher and lower SDQ,respectively,than those of the matrix elements;a secondary factor was their higher and lower shear modulus.Their concentrations were fixed at 3 at.%each because previous work had shown these compositions to be single-phase solid solutions with the face-centered cubic structure.Three alloys were produced by arc melting,casting,homogenizing,cold rolling and annealing at various temperatures and times to produce samples with different grain sizes.They were(a)the base alloy Cr Co Ni,(b)the base alloy plus 3 at.%Mo,and(c)the base alloy plus 3 at.%Al.The activation energies for grain growth of the Cr Co Ni,Cr Co Ni-3Mo and CrCo Ni-3Al MEAs were found to be^251,~368 and^219 k J/mol,respectively,consistent with the notion that elements with higher SDQ(in this study Mo)retard grain growth(likely by a solute-drag effect),whereas those with lower values(Al)accelerate grain growth.The roomtemperature tensile properties show that Mo increases the yield strength by^40%but Al addition has a smaller strengthening effect consistent with their relative shear moduli.The yield strength as a function of grain size for the three single-phase MEAs follows the classical Hall-Petch relationship with much higher slopes(>600 MPaμm-0.5)than traditional solid solutions.This work shows that the grain growth kinetics and solid solution strengthening of the Cr Co Ni MEA can be tuned by selecting solute elements that have appropriate diffusion and physical properties.
基金supported by the National Natural Science Foundation of China(Nos.11790293,51871016,51671021,51971017,51921001)111 Project(No.B07003)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT_14R05)the financial support from the National Key Basic Research Program,China(No.2016YFB0300502)。
文摘Several body-centered-cubic(BCC)refractory high entropy alloys(HEAs),i.e.,Hf Nb Ta Ti Zr,Nb Ta Ti Zr,Hf Nb Ti Zr and Nb Ti Zr,were annealed at intermediate temperatures for 100 h,and their microstructures and aging behaviors were studied in detail.All these HEAs start to decompose into multiple phases at around 500°C,but reenter the single-phase region at significantly different temperatures which were determined to be 900,1000,1100 and above 1300°C for Hf Nb Ti Zr,Nb Ti Zr,Hf Nb Ta Ti Zr and Nb Ta Ti Zr,respectively.Our analysis indicates that the onset decomposition temperature in these four HEAs is closely related to the elemental diffusion rates while the ending decomposition temperature is strongly dependent on the elemental melting points.Our findings are important not only for understanding phase stability of HEAs in general,but also for adjusting processing parameters to optimize mechanical properties of these HEAs.
文摘The absence of efficient red-emitting micrometer-scale light emitting diodes(LEDs),i.e.,LEDs with lateral dimensions of 1μm or less is a major barrier to the adoption of microLEDs in virtual/augmented reality.The underlying challenges include the presence of extensive defects and dislocations for indium-rich InGaN quantum wells,strain-induced quantum-confined Stark effect,and etch-induced surface damage during the fabrication of quantum well microLEDs.Here,we demonstrate a new approach to achieve strong red emission(>620 nm)from dislocation-free N-polar InGaN/GaN nanowires that included an InGaN/GaN short-period superlattice underneath the active region to relax strain and incorporate more indium within the InGaN dot active region.The resulting submicrometer-scale devices show red electroluminescence dominantly from an InGaN dot active region at low-to-moderate injection currents.A peak external quantum efficiency and a wall-plug efficiency of 2.2%and1.7%were measured,respectively,which,to the best of our knowledge,are the highest values reported for a submicrometer-scale red LED.This study offers a new path to overcome the efficiency bottleneck of red-emitting microLEDs for a broad range of applications including mobile displays,wearable electronics,biomedical sensing,ultrahigh speed optical interconnect,and virtual/augmented reality.