We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate syste...We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.展开更多
Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from i...Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.展开更多
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d...The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.展开更多
基金Industrial Support and Program Project of Universities in Gansu Province(No.2022CYZC-30)National Natural Science Foundation of China(Nos.42430108,41930101)China Scholarship Council(No.202306180085).
文摘We-map is an interactive mobile map that can be easily communicated and applied on personal electronic devices,such as personal computers and mobile phones.Therefore,the study of direction systems and coordinate systems is critical,and exploring reference frames is essential in direction and coordinate systems.Despite its significance,existing research on We-map lacks specific solutions for the exploration of reference frames is indispensable for the establishment of accurate direction and coordinate systems.In this paper,we endeavor to address this gap by elucidating the significance of We-map reference frames,defining them with mathematical constraints,summarizing their nature and characteristics,deriving their transformation relationships and representing them through mathematical formulars and equations.Our work contributes to the fundamental theory of We-map and provides valuable systems and support for the mathematical foundation of We-map,map production,and platform development.Ultimately,this research serves to advance the development of We-map.
文摘Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.
基金funded by the Natural Science Foundation Committee,China(41364001,41371435)
文摘The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.