A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to invest...The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists.展开更多
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.
基金supported and sponsored by a project of the Mechanism of Slope deformation induced by Underground Mining in Chongqing(DZLXJK201307)of the Institute of Geomechanicsprojects on Research on Monitoring and Early Warning,Risk Assessment Technology for geological hazards(2012BAK10B00)of the National Key Technology R&D Program for the 12th Five-year Plan
文摘The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists.