Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,g...Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma.展开更多
The Zhashui-Shanyang district is one of the most important sulfide deposits in the Qinling Orogen where the formation of porphyry-skarn Cu-Mo deposits has a close genetic link with the Yanshannian magmatism.Laser Abla...The Zhashui-Shanyang district is one of the most important sulfide deposits in the Qinling Orogen where the formation of porphyry-skarn Cu-Mo deposits has a close genetic link with the Yanshannian magmatism.Laser Ablation-Inductively Coupled Plasma Mass Spectrometry(LA-ICP-MS) U-Pb zircon dating of two granodiorite intrusions(Xiaohekou and Lengshuigou deposits)was investigated in the Zhashui-Shanyang district and the rock-forming ages obtained from 148.3±2.8 to 152.6±1.2 Ma,averaging 150.5 Ma,accompanied by a younger disturbance age of 144.3±1.7 Ma in the Lengshuigou intrusion,which is in excellent agreement with published sensitive high resolution ion micro-probe(SHRIMP)zircon date on the later monzodiorite porphyry phase in the Lenshuigou deposit.Two samples were selected for molybdenite ICP-MS Re-Os isotopic analyses from the Lengshuigou granodiorite porphyry,yielding Re-Os model ages from 149.2±2.7 Ma to 150.6±3.4 Ma, with a weighted mean age of 149.7±2.1 Ma.These mineralization ages overlap rock-forming ages of the host intrusions within the error range.This implies that the mineralization occurred in the Late Jurassic,which belongs to the tectonic phase B event of the Yanshan Movement,not Cretaceous as previously thought.Therefore,the Late Jurassic mineralization of the Zhashui-Shanyang district could be connected to the large-scale Yanshan molybdenum metallogenic period,the geodynamic regime of which is attributable to the far field response of convergence of surrounding plates,perhaps the approximately westward subduction of the Izanagi plate beneath the Eurasian continent.展开更多
Suaeda salsa is an important local species in the intertidal beach of the Western Pacific coast. However,under the artificial cofferdam and Spartina alterniflora expansion,Suaeda marsh has degraded seriously. Therefor...Suaeda salsa is an important local species in the intertidal beach of the Western Pacific coast. However,under the artificial cofferdam and Spartina alterniflora expansion,Suaeda marsh has degraded seriously. Therefore,using Yancheng Nature Reserve as a case study area,taking ETM+images in 2000,2006 and 2011 as the basic data sources,we revealed the evolution characteristics of Salsa marsh which was impacted. The research results are as follows. From 2000 to 2011,Salsa marsh area in the artificial area tempestuously degraded,decreasing by 87. 158%,more than 22% than those in the natural area. The landscape was fragmentized. Landscape polymerization degree index dropped from 95. 780 to 65. 455,more than 16% than those in the natural area. The mean patch area fell down to 21. 429 ha from 389. 333 ha,more than 11% that in the natural area. Compared to the steady change in natural conditions,the area was reduced by 118. 167 ha/a from 2000 to 2006,while during 2006-2011,it was only 51. 500 ha/a in artificial area. As for spatial change of landscape,in artificial area,the Salsa marsh centroid moved forward to the southeast with 666. 350 m,but that in natural area moved forward to the north with 1 042. 710 m from 2000 to 2006. From 2006 to 2011,the centroid moved forward to east and north respectively. Artificial cofferdam transformed the area into freshwater ecosystem,and meanwhile the freshwater was beneficial to Reed marsh. During 2000 to 2006,in the artificial area,539 ha Salsa marsh controlled by cofferdam transferred into reed marsh and aquaculture ponds,of which the transformation rate was nearly 4% higher than that in natural area. From 2006 to 2011,178 ha Salsa marsh was transferred into reed marsh,the transformation rate was 20% higher than that in natural area. With rapid spreading and strong competition of Spartina species,the coastal wetland has formed the pattern of " Salsa – Spartina marshes". From 2000 to 2006,in artificial area,15. 24% of Salsa marsh was transferred into Spartina marsh,of which the transformation rate was13% higher than that in natural area. And from 2006 to 2011,30. 07% Salsa marsh was replaced by the Spartina marsh in artificial area,the rate was almost 10% higher than that in the natural area.展开更多
高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(...高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(CNN)因强大的特征提取能力广泛应用于高光谱图像分类方法研究中,取得了有效的研究成果,但该类方法通常单独基于2D-CNN或3D-CNN进行,针对高光谱图像的单一特征,一是不能充分利用高光谱数据本身完整的特征信息;二是虽然相应提取网络局部特征优化性好,但是整体泛化能力不足,在深度挖掘HSI的空间和光谱信息方面存在局限性。鉴于此,提出了基于注意力机制的混合卷积神经网络模型(HybridSN_AM),使用主成分分析法对高光谱图像进行降维,采用卷积神经网络作为分类模型的主体,通过注意力机制筛选出更有区分度的特征,使模型能够提取到更精确、更核心的空间-光谱信息,实现高光谱图像的高精度分类。对Indian Pines(IP)、University of Pavia(UP)和Salinas(SA)三个数据集进行了应用实验,结果表明,基于该模型的目标图像总体分类精度、平均分类精度和Kappa系数均高于98.14%、97.17%、97.87%。与常规HybridSN模型对比表明,HybridSN_AM模型在三个数据集上的分类精度分别提升了0.89%、0.07%和0.73%。有效解决了高光谱图像空间-光谱特征提取与融合的难题,提高HSI分类的精度,具有较强的泛化能力,充分验证了注意力机制结合混合卷积神经网络在高光谱图像分类中的有效性和可行性,对高光谱图像分类技术的发展及应用具有重要的科学价值。展开更多
基金supported by the China Geological Survey(Grant No.DD20221649)National Natural Science Foundation of China(Grant Nos.42230308,42072266)+3 种基金Bureau of Geological Exploration and Development of Qinghai Province(Grant No.[2022]32)the Xingdian Scholar Fund of Yunnan Province(Grant No.C6213001155)China Postdoctoral Science Foundation(Grant No.2021M691702)High-level Talents Project of Qinghai Province.
文摘Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma.
基金supported by the NSFC project(Grant No41072169 and 40972150)the Ministry of Science and Technology of People's Republic of China(Grant No2006BAB01All)a China Postdoctoral Science Foundation Grant
文摘The Zhashui-Shanyang district is one of the most important sulfide deposits in the Qinling Orogen where the formation of porphyry-skarn Cu-Mo deposits has a close genetic link with the Yanshannian magmatism.Laser Ablation-Inductively Coupled Plasma Mass Spectrometry(LA-ICP-MS) U-Pb zircon dating of two granodiorite intrusions(Xiaohekou and Lengshuigou deposits)was investigated in the Zhashui-Shanyang district and the rock-forming ages obtained from 148.3±2.8 to 152.6±1.2 Ma,averaging 150.5 Ma,accompanied by a younger disturbance age of 144.3±1.7 Ma in the Lengshuigou intrusion,which is in excellent agreement with published sensitive high resolution ion micro-probe(SHRIMP)zircon date on the later monzodiorite porphyry phase in the Lenshuigou deposit.Two samples were selected for molybdenite ICP-MS Re-Os isotopic analyses from the Lengshuigou granodiorite porphyry,yielding Re-Os model ages from 149.2±2.7 Ma to 150.6±3.4 Ma, with a weighted mean age of 149.7±2.1 Ma.These mineralization ages overlap rock-forming ages of the host intrusions within the error range.This implies that the mineralization occurred in the Late Jurassic,which belongs to the tectonic phase B event of the Yanshan Movement,not Cretaceous as previously thought.Therefore,the Late Jurassic mineralization of the Zhashui-Shanyang district could be connected to the large-scale Yanshan molybdenum metallogenic period,the geodynamic regime of which is attributable to the far field response of convergence of surrounding plates,perhaps the approximately westward subduction of the Izanagi plate beneath the Eurasian continent.
基金Supported by National Natural Science Foundation of China(41771199)Basic Research Project of Jiangsu Province,China(BK20171277)
文摘Suaeda salsa is an important local species in the intertidal beach of the Western Pacific coast. However,under the artificial cofferdam and Spartina alterniflora expansion,Suaeda marsh has degraded seriously. Therefore,using Yancheng Nature Reserve as a case study area,taking ETM+images in 2000,2006 and 2011 as the basic data sources,we revealed the evolution characteristics of Salsa marsh which was impacted. The research results are as follows. From 2000 to 2011,Salsa marsh area in the artificial area tempestuously degraded,decreasing by 87. 158%,more than 22% than those in the natural area. The landscape was fragmentized. Landscape polymerization degree index dropped from 95. 780 to 65. 455,more than 16% than those in the natural area. The mean patch area fell down to 21. 429 ha from 389. 333 ha,more than 11% that in the natural area. Compared to the steady change in natural conditions,the area was reduced by 118. 167 ha/a from 2000 to 2006,while during 2006-2011,it was only 51. 500 ha/a in artificial area. As for spatial change of landscape,in artificial area,the Salsa marsh centroid moved forward to the southeast with 666. 350 m,but that in natural area moved forward to the north with 1 042. 710 m from 2000 to 2006. From 2006 to 2011,the centroid moved forward to east and north respectively. Artificial cofferdam transformed the area into freshwater ecosystem,and meanwhile the freshwater was beneficial to Reed marsh. During 2000 to 2006,in the artificial area,539 ha Salsa marsh controlled by cofferdam transferred into reed marsh and aquaculture ponds,of which the transformation rate was nearly 4% higher than that in natural area. From 2006 to 2011,178 ha Salsa marsh was transferred into reed marsh,the transformation rate was 20% higher than that in natural area. With rapid spreading and strong competition of Spartina species,the coastal wetland has formed the pattern of " Salsa – Spartina marshes". From 2000 to 2006,in artificial area,15. 24% of Salsa marsh was transferred into Spartina marsh,of which the transformation rate was13% higher than that in natural area. And from 2006 to 2011,30. 07% Salsa marsh was replaced by the Spartina marsh in artificial area,the rate was almost 10% higher than that in the natural area.
文摘高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(CNN)因强大的特征提取能力广泛应用于高光谱图像分类方法研究中,取得了有效的研究成果,但该类方法通常单独基于2D-CNN或3D-CNN进行,针对高光谱图像的单一特征,一是不能充分利用高光谱数据本身完整的特征信息;二是虽然相应提取网络局部特征优化性好,但是整体泛化能力不足,在深度挖掘HSI的空间和光谱信息方面存在局限性。鉴于此,提出了基于注意力机制的混合卷积神经网络模型(HybridSN_AM),使用主成分分析法对高光谱图像进行降维,采用卷积神经网络作为分类模型的主体,通过注意力机制筛选出更有区分度的特征,使模型能够提取到更精确、更核心的空间-光谱信息,实现高光谱图像的高精度分类。对Indian Pines(IP)、University of Pavia(UP)和Salinas(SA)三个数据集进行了应用实验,结果表明,基于该模型的目标图像总体分类精度、平均分类精度和Kappa系数均高于98.14%、97.17%、97.87%。与常规HybridSN模型对比表明,HybridSN_AM模型在三个数据集上的分类精度分别提升了0.89%、0.07%和0.73%。有效解决了高光谱图像空间-光谱特征提取与融合的难题,提高HSI分类的精度,具有较强的泛化能力,充分验证了注意力机制结合混合卷积神经网络在高光谱图像分类中的有效性和可行性,对高光谱图像分类技术的发展及应用具有重要的科学价值。