In this paper we study the eigenvalue problem for integro-differential operators on a lasso graph.The trace formula of the operator is established by applying the residual technique in complex analysis.
In this paper,we consider the inverse resonance problems for the discontinuous and non-selfadjoint Sturm-Liouville problem.We prove the uniqueness theorem and provide a reconstructive algorithm for the potential by us...In this paper,we consider the inverse resonance problems for the discontinuous and non-selfadjoint Sturm-Liouville problem.We prove the uniqueness theorem and provide a reconstructive algorithm for the potential by using the Cauchy data and Weyl function.展开更多
In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine...In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine the potential on the whole interval and some parameters.展开更多
Sturm-Liouville operators on a finite interval with discontinuities are considered. We give a uniqueness theorem for determining the potential and the parameters in boundary and under discontinuous conditions from a p...Sturm-Liouville operators on a finite interval with discontinuities are considered. We give a uniqueness theorem for determining the potential and the parameters in boundary and under discontinuous conditions from a particular set of eigenvalues, and provide corresponding reconstruction algorithm, which can be applicable to McLaughlin-Rundell's uniqueness theorem (see J. Math. Phys. 28, 1987).展开更多
基金Supported by the National Natural Science Foundation of China(11871031)the National Natural Science Foundation of Jiang Su(BK20201303).
文摘In this paper we study the eigenvalue problem for integro-differential operators on a lasso graph.The trace formula of the operator is established by applying the residual technique in complex analysis.
基金supported in part by the National Natural Science Foundation of China (11871031)the Natural Science Foundation of the Jiangsu Province of China(BK 20201303)supported in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX20 0245)
文摘In this paper,we consider the inverse resonance problems for the discontinuous and non-selfadjoint Sturm-Liouville problem.We prove the uniqueness theorem and provide a reconstructive algorithm for the potential by using the Cauchy data and Weyl function.
基金The research work was supported in part by the National Natural Science Foundation of China(11611530682 and 11871031).
文摘In this work,we consider the inverse nodal problem for the Sturm-Liouville problem with a weight and the jump condition at the middle point.It is shown that the dense nodes of the eigenfunctions can uniquely determine the potential on the whole interval and some parameters.
基金supported in part by the National Natural Science Foundation of China(11611530682,11171152 and 91538108)Natural Science Foundation of Jiangsu Province of China(BK 20141392)supported by the China Scholarship Fund(201706840062)
文摘Sturm-Liouville operators on a finite interval with discontinuities are considered. We give a uniqueness theorem for determining the potential and the parameters in boundary and under discontinuous conditions from a particular set of eigenvalues, and provide corresponding reconstruction algorithm, which can be applicable to McLaughlin-Rundell's uniqueness theorem (see J. Math. Phys. 28, 1987).