针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳...针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳定性的影响,获取能够实现高氮钢增材稳定熔滴过渡的工艺参数。试验结果表明:在脉冲熔化极气体保护(Pulsed Gas Metal Arc,P-GMA)增材工艺条件下可以实现一脉一滴过渡,但是过渡稳定性较差,飞溅明显;在P-GMA基值阶段或基值和峰值阶段都叠加超音频脉冲电流均不利于熔滴过渡,容易出现短路、熔滴爆炸等问题;在P-GMA峰值阶段叠加低频(20 kHz)脉冲电流时,对熔滴过渡影响较弱,叠加中频(40~60 kHz)脉冲电流能抑制高氮钢熔滴过渡中大颗粒飞溅生成,提高熔滴过渡稳定性,但是当频率超过60 kHz时在过渡中会形成许多小飞溅。展开更多
Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calcu...Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions.展开更多
为提升高氮钢焊接质量和优化焊接工艺,研究焊丝氮、锰含量带来的焊接工艺稳定性。采用冷金属过渡加脉冲(Cold Metal Transfer plus Pulse,CMT+P)焊技术对5种高氮钢焊丝进行焊接试验,研究焊丝成分对电信号、熔滴过渡、飞溅率的影响。研...为提升高氮钢焊接质量和优化焊接工艺,研究焊丝氮、锰含量带来的焊接工艺稳定性。采用冷金属过渡加脉冲(Cold Metal Transfer plus Pulse,CMT+P)焊技术对5种高氮钢焊丝进行焊接试验,研究焊丝成分对电信号、熔滴过渡、飞溅率的影响。研究结果表明:氮含量的增加会引起电信号波动变大且分布离散,而锰含量的变化对电信号的影响较小,焊丝中氮含量对高氮钢CMT+P焊接稳定性影响大于锰含量的影响;随着氮含量的增加,熔滴过渡模式由一脉一滴转变为多脉一滴,熔滴形状不规律且尺寸变大,焊丝工艺性变差;当焊丝中氮、锰含量较小,分别为0.42%、7.19%时,焊接工艺稳定性较好;氮逸出、锰蒸发导致高氮钢熔滴剧烈爆炸产生大量飞溅,焊接飞溅率随着氮、锰含量的增加而不断增大。展开更多
文摘针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳定性的影响,获取能够实现高氮钢增材稳定熔滴过渡的工艺参数。试验结果表明:在脉冲熔化极气体保护(Pulsed Gas Metal Arc,P-GMA)增材工艺条件下可以实现一脉一滴过渡,但是过渡稳定性较差,飞溅明显;在P-GMA基值阶段或基值和峰值阶段都叠加超音频脉冲电流均不利于熔滴过渡,容易出现短路、熔滴爆炸等问题;在P-GMA峰值阶段叠加低频(20 kHz)脉冲电流时,对熔滴过渡影响较弱,叠加中频(40~60 kHz)脉冲电流能抑制高氮钢熔滴过渡中大颗粒飞溅生成,提高熔滴过渡稳定性,但是当频率超过60 kHz时在过渡中会形成许多小飞溅。
基金funded by the National Natural Science Foundation of China(Grant No.41861134008)Muhammad Asif Khan academician workstation of Yunnan Province(Grant No.202105AF150076)+6 种基金General program of Yunnan Province Science and Technology Department(Grant No.202105AF150076)Key Project of Natural Science Foundation of Yunnan Province(Grant No.202101AS070019)Key R&D Program of Yunnan Province(Grant No.202003AC100002)General Program of basic research plan of Yunnan Province(Grant No.202001AT070059)Major scientific and technological projects of Yunnan Province:Research on Key Technologies of ecological environment monitoring and intelligent management of natural resources in Yunnan(No:202202AD080010)“Study on High-Level Hidden Landslide Identification Based on Multi-Source Data”of Key Laboratory of Early Rapid Identification,Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province(KLGDTC-2021-02)Guizhou Scientific and Technology Fund(QKHJ-ZK[2023]YB 193).
文摘Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions.
文摘为提升高氮钢焊接质量和优化焊接工艺,研究焊丝氮、锰含量带来的焊接工艺稳定性。采用冷金属过渡加脉冲(Cold Metal Transfer plus Pulse,CMT+P)焊技术对5种高氮钢焊丝进行焊接试验,研究焊丝成分对电信号、熔滴过渡、飞溅率的影响。研究结果表明:氮含量的增加会引起电信号波动变大且分布离散,而锰含量的变化对电信号的影响较小,焊丝中氮含量对高氮钢CMT+P焊接稳定性影响大于锰含量的影响;随着氮含量的增加,熔滴过渡模式由一脉一滴转变为多脉一滴,熔滴形状不规律且尺寸变大,焊丝工艺性变差;当焊丝中氮、锰含量较小,分别为0.42%、7.19%时,焊接工艺稳定性较好;氮逸出、锰蒸发导致高氮钢熔滴剧烈爆炸产生大量飞溅,焊接飞溅率随着氮、锰含量的增加而不断增大。