期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tomato detection method using domain adaptive learning for dense planting environments
1
作者 LI yang HOU Wenhui +4 位作者 yang huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
某跨越排洪箱涵扩建学校结构设计探讨
2
作者 杨辉煌 《福建建设科技》 2024年第1期122-125,共4页
某扩建学校位于老旧城区内,工程建设存在着场地局促、地下管网复杂、主体结构跨越排洪箱涵等诸多问题,且为实现多元化建筑艺术风格效果,入口大雨棚处设置有斜柱。针对上述工程特点,重点分析了排洪箱涵及楼、电梯间紧邻原有建筑的影响,... 某扩建学校位于老旧城区内,工程建设存在着场地局促、地下管网复杂、主体结构跨越排洪箱涵等诸多问题,且为实现多元化建筑艺术风格效果,入口大雨棚处设置有斜柱。针对上述工程特点,重点分析了排洪箱涵及楼、电梯间紧邻原有建筑的影响,对结构方案进行比选,选取较为合理、安全、可行的结构方案,同时采用空间模型软件对斜柱结构进行计算分析,针对薄弱部位特殊加强处理,为以后类似的工程提供借鉴。验收结果表明,结构方案及加强措施安全可行。 展开更多
关键词 扩建学校 跨越排洪箱涵 斜柱 楼、电梯间紧邻原有建筑
下载PDF
广东汉族人群GLUT1基因rs3754219位点单核苷酸多态性与2型糖尿病遗传易感性研究
3
作者 闫妍 杨辉煌 +8 位作者 胡维 徐霖 王姝 王星杰 谢宇荀 孔丹莉 潘海燕 丁元林 于海兵 《华西医学》 CAS 2019年第11期1274-1278,共5页
目的探讨广东地区汉族人群葡萄糖转运蛋白(glucose transporters 1,GLUT1)基因rs3754219位点单核苷酸多态性(single nucleotide polymorphism,SNP)与2型糖尿病(type 2 diabetes mellitus,T2DM)遗传易感性的关系。方法 2011年11月-2014... 目的探讨广东地区汉族人群葡萄糖转运蛋白(glucose transporters 1,GLUT1)基因rs3754219位点单核苷酸多态性(single nucleotide polymorphism,SNP)与2型糖尿病(type 2 diabetes mellitus,T2DM)遗传易感性的关系。方法 2011年11月-2014年10月,纳入10所医院确诊为T2DM的1 092例患者为病例组,同期1 092例健康人群为对照组。剔除SNP分型缺失率>20%(37例)和SNP位点均分型失败个体(26例),最终纳入病例组1 067例,对照组1 054例。使用SNPscan TM技术检测两组人群GLUT1基因rs3754219位点的基因型,分析其基因型、等位基因频率和不同遗传模型在两组中的分布差异。结果经年龄及体质量指数校正后,rs3754219位点的等位基因频率、多态性基因型频率比较,差异均无统计学意义(P>0.05)。在不同遗传模型下两组间比较,差异亦均无统计学意义(P>0.05)。结论广东地区汉族人群T2DM患者遗传易感性可能与GLUT1 rs3754219位点SNP无关。 展开更多
关键词 2型糖尿病 单核苷酸多态性 GLUT1基因
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部