NAMI-A[imidazolium trans-tetrachloro(dimethylsulfoxide)imidazoleruthenium(Ⅲ)] shows extraordinary activities against metastatic tumors. However, the hydrolysis of NAMI-A to produce dimethyl sulfoxide(DMSO) could redu...NAMI-A[imidazolium trans-tetrachloro(dimethylsulfoxide)imidazoleruthenium(Ⅲ)] shows extraordinary activities against metastatic tumors. However, the hydrolysis of NAMI-A to produce dimethyl sulfoxide(DMSO) could reduce anti-metastatic activity. To enhance the circulation time and the anti-metastatic effect of NAMI-A, NAMI-A-loaded nanoparticles were prepared by the double emulsion method and characterized by scanning electron microscopy for surface morphology, laser light scattering for size and zeta potential for surface charges. Controlled release of NAMI-A was observed in a sustained manner. Compared with free NAMI-A, NAMI-A-loaded nanoparticles exhibited superior antitumor effect by delaying tumor growth in T739 mice. PLGA-mPEG nanoparticles are promising for further studies as drug delivery carriers.展开更多
The 4N1K peptide,which is derived from the C-terminal domain of thrombospondin-1(TSP-1),is usually used as a functional mimic peptide for TSP-1.Knowledge about the interaction force of 4N1K/CD47 is important in explai...The 4N1K peptide,which is derived from the C-terminal domain of thrombospondin-1(TSP-1),is usually used as a functional mimic peptide for TSP-1.Knowledge about the interaction force of 4N1K/CD47 is important in explaining how TSP-1 affects the biological effect of CD47.Here we used a single-molecule force spectroscopy(SMFS)technique to explore the interaction of 4N1K/CD47 on both normal and oxidative human red blood cells(h RBCs)at single-molecule level.There was no interaction force between 4N1K and CD47 on normal h RBCs;however,we did find 4N1K-bound CD47 on oxidative h RBCs.We also detected interaction forces for 4N1K/CD47ex(extracellular domain of human CD47),and 4N1K/oxidative CD47ex.The interaction forces of 4N1K/CD47ex were almost consistent with those of 4N1K/oxidative CD47ex at the same loading rate.These results suggest that the conformational change of CD47 is critical for 4N1K-CD47 interaction on oxidative h RBCs.展开更多
基金Supported by the National Natural Science Foundation of China(No.20871056)the Planned Item of Science and Technology of Guangdong Province, China (No.C1011220800060)the "211" Project Grant of Jinan University.
文摘NAMI-A[imidazolium trans-tetrachloro(dimethylsulfoxide)imidazoleruthenium(Ⅲ)] shows extraordinary activities against metastatic tumors. However, the hydrolysis of NAMI-A to produce dimethyl sulfoxide(DMSO) could reduce anti-metastatic activity. To enhance the circulation time and the anti-metastatic effect of NAMI-A, NAMI-A-loaded nanoparticles were prepared by the double emulsion method and characterized by scanning electron microscopy for surface morphology, laser light scattering for size and zeta potential for surface charges. Controlled release of NAMI-A was observed in a sustained manner. Compared with free NAMI-A, NAMI-A-loaded nanoparticles exhibited superior antitumor effect by delaying tumor growth in T739 mice. PLGA-mPEG nanoparticles are promising for further studies as drug delivery carriers.
基金financially supported by the National Basic Research Program of China(2011CB933600,2013CB966900)the National Natural Science Foundation of China(21373200,81273334)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,IRT1133)
文摘The 4N1K peptide,which is derived from the C-terminal domain of thrombospondin-1(TSP-1),is usually used as a functional mimic peptide for TSP-1.Knowledge about the interaction force of 4N1K/CD47 is important in explaining how TSP-1 affects the biological effect of CD47.Here we used a single-molecule force spectroscopy(SMFS)technique to explore the interaction of 4N1K/CD47 on both normal and oxidative human red blood cells(h RBCs)at single-molecule level.There was no interaction force between 4N1K and CD47 on normal h RBCs;however,we did find 4N1K-bound CD47 on oxidative h RBCs.We also detected interaction forces for 4N1K/CD47ex(extracellular domain of human CD47),and 4N1K/oxidative CD47ex.The interaction forces of 4N1K/CD47ex were almost consistent with those of 4N1K/oxidative CD47ex at the same loading rate.These results suggest that the conformational change of CD47 is critical for 4N1K-CD47 interaction on oxidative h RBCs.