The Qinghai-Tibet Plateau,often referred to as the"roof of the world",the"Asian water tower,"and the"third pole of the earth"is renowned for its unique geographical features.
This paper reveals the temporal and spatial variations of stable isotope in precipitation of the Yarlung Zangbo River Basin based on the variations of δ^18O in precipitation at four stations (Lhaze, Nugesha, Yangcu...This paper reveals the temporal and spatial variations of stable isotope in precipitation of the Yarlung Zangbo River Basin based on the variations of δ^18O in precipitation at four stations (Lhaze, Nugesha, Yangcun and Nuxia) in 2005. The results show that δ^18O of precipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ^18O occurs in spring prior to monsoon precipitation, and the lower value occurs during monsoon precipitation. From the spatial variations, with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley, δ^18O of precipitation is gradually depleted. Thus, δ^18O of precipitation decreases gradually from the downstream to the upstream, and the lapse rate of δ^18O in precipitation is approximately 0.34‰/100m and 0.7%J‰/100km for the two reasons. During monsoon precipitation, spatial variation of δ^18O in precipitation is dominated by the amount effect in the large scale synoptic condition.展开更多
The variations of the meltwater runoff draining from Kartamak Glacier in Mt. Muztag Ata in China were studied by using the measured hydrological data from 1 June to 25 August 2003. The meltwater runoff is mainly affec...The variations of the meltwater runoff draining from Kartamak Glacier in Mt. Muztag Ata in China were studied by using the measured hydrological data from 1 June to 25 August 2003. The meltwater runoff is mainly affected by ambient temperature and precipitation. Meltwater and precipitation samples were collected from 10 to 23 August 2003. Their pH, EC (electric conductivity) and the major ions (Na^+, K^+, Ca^(2+), Mg^(2+), Cl^-, NO_3^-, SO_~4^(2-)) were determined. pH values showed a positive correlation with EC values for all samples. Meltwater samples were slightly alkaline. Sulfate and calcium were the dominant anion and cation in the measured ions, respectively. All the ion concentrations had inverse relationships with runoff or water level. In order to discuss the origins of dissolved chemical substances in the glacial meltwater, a principal component analysis was carried out. The results showed that water-rock interaction determined the ion components of the meltwater.展开更多
A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions...A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.展开更多
A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend...A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval o N 1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in preindustrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship betweenatmospheric methane and climate change.展开更多
Glaciers are considered to be‘climate-sensitive indicators'and‘solid reservoirs',and their changes significantly impact regional water security.The mass balance(MB)from 2011 to 2020 of the Qiyi Glacier in th...Glaciers are considered to be‘climate-sensitive indicators'and‘solid reservoirs',and their changes significantly impact regional water security.The mass balance(MB)from 2011 to 2020 of the Qiyi Glacier in the northeast Tibetan Plateau is presented based on field observations.The glacier showed a persistent negative balance over 9 years of in-situ observations,with a mean MB of-0.51 m w.e.yr^(-1).The distributed energy-mass balance model was used for glacier MB reconstruction from 1980 to 2020.The daily meteorological data used in the model were from HAR v2 reanalysis data,with automatic weather stations located in the middle and upper parts of the glacier used for deviation correction.The average MB over the past 40 years of the Qiyi Glacier was -0.36 m w.e.yr^(-1)with the mass losses since the beginning of the 21st century,being greater than those in the past.The glacier runoff shows a significant increasing trend,contributing~81% of the downstream river runoff.The albedo disparity indicates that the net shortwave radiation is much higher in the ablation zone than in the accumulation zone,accelerating ablation-area expansion and glacier mass depletion.The MB of the Qiyi Glacier is more sensitive to temperature and incoming shortwave radiation variation than precipitation.The MB presented a non-linear reaction to the temperature and incoming shortwave radiation.Under future climate warming,the Qiyi Glacier will be increasingly likely to deviate from the equilibrium state,thereby exacerbating regional water balance risks.It is found that the mass losses of eastern glaciers are higher than those of western glaciers,indicating significant spatial heterogeneity that may be attributable to the lower altitude and smaller area distribution of the eastern glaciers.展开更多
文摘The Qinghai-Tibet Plateau,often referred to as the"roof of the world",the"Asian water tower,"and the"third pole of the earth"is renowned for its unique geographical features.
基金National Natural Science Foundation of China, No.40121101 No.40671043+2 种基金 No.40571039 National Basic Research Program of China, No.2005CB422002 Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX3- SW-339
文摘This paper reveals the temporal and spatial variations of stable isotope in precipitation of the Yarlung Zangbo River Basin based on the variations of δ^18O in precipitation at four stations (Lhaze, Nugesha, Yangcun and Nuxia) in 2005. The results show that δ^18O of precipitation has distinct seasonal changes in the Yarlung Zangbo River Basin. The higher value of δ^18O occurs in spring prior to monsoon precipitation, and the lower value occurs during monsoon precipitation. From the spatial variations, with the altitude-effect and rainout process during moisture transport along the Yarlung Zangbo River Valley, δ^18O of precipitation is gradually depleted. Thus, δ^18O of precipitation decreases gradually from the downstream to the upstream, and the lapse rate of δ^18O in precipitation is approximately 0.34‰/100m and 0.7%J‰/100km for the two reasons. During monsoon precipitation, spatial variation of δ^18O in precipitation is dominated by the amount effect in the large scale synoptic condition.
基金This work was supported by the National Basic Research Program of China (Grant No.2005CB422004);the Knowledge Innovation Project of CAS of China (Grant No. KZCX3-SW-339);the Innovative Research Team of the National Natural Science Foundation of China (Grant No. 40121101).
文摘The variations of the meltwater runoff draining from Kartamak Glacier in Mt. Muztag Ata in China were studied by using the measured hydrological data from 1 June to 25 August 2003. The meltwater runoff is mainly affected by ambient temperature and precipitation. Meltwater and precipitation samples were collected from 10 to 23 August 2003. Their pH, EC (electric conductivity) and the major ions (Na^+, K^+, Ca^(2+), Mg^(2+), Cl^-, NO_3^-, SO_~4^(2-)) were determined. pH values showed a positive correlation with EC values for all samples. Meltwater samples were slightly alkaline. Sulfate and calcium were the dominant anion and cation in the measured ions, respectively. All the ion concentrations had inverse relationships with runoff or water level. In order to discuss the origins of dissolved chemical substances in the glacial meltwater, a principal component analysis was carried out. The results showed that water-rock interaction determined the ion components of the meltwater.
基金National Natural Science Foundation of China, No.40121101 Knowledge Innovation Project of Chinese Academy of Sciences, No.KZCX3-SW-339
文摘A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.
基金supported by the National Natural Science Foundation of China (40671044)the Ministry of Science and Technology of China (2005CB422004)
文摘A high-resolution 2ooo-year methane record has been constructed from an ice core recovered at 7200 m a.s.1, on the Dasuopu Glacier in the central Himalayas. This sub-tropical methane record reveals an increasing trend in the concentration of methane during the industrial era that is similar to observations from polar regions. However, we also observed the differences in the atmospheric methane mixing ratio between this monsoon record and those from polar regions during pre-industrial times. In the time interval o N 1850 A.D., the average methane concentration in the Dasuopu ice core was 782±40 ppbv and the maximum temporal variation exceeded 200 ppbv. The difference gradient of methane concentration in Dasuopu ice core with Greenland and Antarctica cores are 66±40 ppbv and 107±40 ppbv, respectively. This suggests that the tropical latitudes might have acted as a major global methane source in preindustrial times. In addition, the temporal fluctuation of the pre-industrial methane records suggests that monsoon evolution incorporated with high methane emission from south Asia might be responsible for the relatively high methane concentration observed in the Dasuopu ice core around A.D. 800 and A.D. 1600. These results provide a rough understanding of the contribution of tropical methane source to the global methane budget and also the relationship betweenatmospheric methane and climate change.
基金Second Tibetan Plateau Scientific Expedition and Research Program,No.2019QZKK0201National Natural Science Foundation of China,No.41801034,No.41971092Basic Research Program of Shanxi Province,No.202203021211258,No.202103021223248。
文摘Glaciers are considered to be‘climate-sensitive indicators'and‘solid reservoirs',and their changes significantly impact regional water security.The mass balance(MB)from 2011 to 2020 of the Qiyi Glacier in the northeast Tibetan Plateau is presented based on field observations.The glacier showed a persistent negative balance over 9 years of in-situ observations,with a mean MB of-0.51 m w.e.yr^(-1).The distributed energy-mass balance model was used for glacier MB reconstruction from 1980 to 2020.The daily meteorological data used in the model were from HAR v2 reanalysis data,with automatic weather stations located in the middle and upper parts of the glacier used for deviation correction.The average MB over the past 40 years of the Qiyi Glacier was -0.36 m w.e.yr^(-1)with the mass losses since the beginning of the 21st century,being greater than those in the past.The glacier runoff shows a significant increasing trend,contributing~81% of the downstream river runoff.The albedo disparity indicates that the net shortwave radiation is much higher in the ablation zone than in the accumulation zone,accelerating ablation-area expansion and glacier mass depletion.The MB of the Qiyi Glacier is more sensitive to temperature and incoming shortwave radiation variation than precipitation.The MB presented a non-linear reaction to the temperature and incoming shortwave radiation.Under future climate warming,the Qiyi Glacier will be increasingly likely to deviate from the equilibrium state,thereby exacerbating regional water balance risks.It is found that the mass losses of eastern glaciers are higher than those of western glaciers,indicating significant spatial heterogeneity that may be attributable to the lower altitude and smaller area distribution of the eastern glaciers.