Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a n...Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a new style isolator system was created. This isolator system consists of a steel coil spring component and a magnetorheological (MR) damper component working in parallel. Experiments on this isolator system were carried out, including tests of vibration reduction and shock resistance. The vibration load frequencies were set from 1-15 Hz, and force amplitudes from 2.94-11.76kN. The maximum shock input acceleration was 20 g, and impulse width was lores. Both the vibration and shock loads were applied using MTS Systems Corporation's hydraulic actuators. The experimental results indicated that the isolator system performs well on system vibration response, with resonance humps of the vibration response obviously reduced after using the MR damper. For the shock experiment, the attenuation of shock response was much faster with increased MR damping. The MR damper's effect on shock moments was very different from its performance in vibration mode. The correlation between MR force and control current was not as evident as it was during vibration loads.展开更多
The interaction of two underwater explosion bubbles was mathematically analyzed in this paper. Based on the assumption of potential flow, high-order curved elements were used to discretize the boundary integral equati...The interaction of two underwater explosion bubbles was mathematically analyzed in this paper. Based on the assumption of potential flow, high-order curved elements were used to discretize the boundary integral equation and solve it. Assuming that gas inside the bubble follows the isentropic rule, the Euler-Lagrange method was used to trace the evolution of the bubble, and when calculating the singular integral, the singularity of the double-layer singular integral was eliminated by reconstructing a principal-value integral of double-layer potential so that a more precise result could be obtained. Elastic mesh technique (EMT) was also used when tracing the evolution of the bubble interface, and numerical smoothing wasn't needed. A comparison of calculations using this three-dimensional model with results of the Reyleigh-Plesset bubble model shows that the three-dimensional model and calculation method in this paper is practical. This three-dimensional model was applied to simulate the interaction of two bubbles under the action of gravity, and the dynamic characteristics of two bubbles near the surface was also analyzed. Bubbles influenced by surface effects and gravity present severe non-linearity. This paper provides a reference for research into the dynamics of multi-bubbles.展开更多
To study the distribution characteristics and similarity laws of nuclei under different pressures,based on the selfdesigned decompression chamber and the acoustic measuring system,the size distributions of nuclei in t...To study the distribution characteristics and similarity laws of nuclei under different pressures,based on the selfdesigned decompression chamber and the acoustic measuring system,the size distributions of nuclei in the degassed tap water under negative ambient pressures were measured.A number density distribution function of nuclei based on the modified Weibull distribution function was proposed and verified by the experimental measurement results and some published data of nuclei size distribution.Based on this nuclei number density distribution function,the similarity law of the nuclei size distribution was analyzed:in the scale experiment,the value of exponential in the similarity law of the nuclei number density should be determined by the nuclei size distribution of the water in the prototype experiment and the actual nuclei size distribution of the water in the model experiment.And a precondition is that the nuclei size distributions are similar.展开更多
文摘Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a new style isolator system was created. This isolator system consists of a steel coil spring component and a magnetorheological (MR) damper component working in parallel. Experiments on this isolator system were carried out, including tests of vibration reduction and shock resistance. The vibration load frequencies were set from 1-15 Hz, and force amplitudes from 2.94-11.76kN. The maximum shock input acceleration was 20 g, and impulse width was lores. Both the vibration and shock loads were applied using MTS Systems Corporation's hydraulic actuators. The experimental results indicated that the isolator system performs well on system vibration response, with resonance humps of the vibration response obviously reduced after using the MR damper. For the shock experiment, the attenuation of shock response was much faster with increased MR damping. The MR damper's effect on shock moments was very different from its performance in vibration mode. The correlation between MR force and control current was not as evident as it was during vibration loads.
文摘The interaction of two underwater explosion bubbles was mathematically analyzed in this paper. Based on the assumption of potential flow, high-order curved elements were used to discretize the boundary integral equation and solve it. Assuming that gas inside the bubble follows the isentropic rule, the Euler-Lagrange method was used to trace the evolution of the bubble, and when calculating the singular integral, the singularity of the double-layer singular integral was eliminated by reconstructing a principal-value integral of double-layer potential so that a more precise result could be obtained. Elastic mesh technique (EMT) was also used when tracing the evolution of the bubble interface, and numerical smoothing wasn't needed. A comparison of calculations using this three-dimensional model with results of the Reyleigh-Plesset bubble model shows that the three-dimensional model and calculation method in this paper is practical. This three-dimensional model was applied to simulate the interaction of two bubbles under the action of gravity, and the dynamic characteristics of two bubbles near the surface was also analyzed. Bubbles influenced by surface effects and gravity present severe non-linearity. This paper provides a reference for research into the dynamics of multi-bubbles.
基金financially supported by the Foundation Strengthening Program Technical Area Fund(Grant No.2019-JCJQ-JJ-293)。
文摘To study the distribution characteristics and similarity laws of nuclei under different pressures,based on the selfdesigned decompression chamber and the acoustic measuring system,the size distributions of nuclei in the degassed tap water under negative ambient pressures were measured.A number density distribution function of nuclei based on the modified Weibull distribution function was proposed and verified by the experimental measurement results and some published data of nuclei size distribution.Based on this nuclei number density distribution function,the similarity law of the nuclei size distribution was analyzed:in the scale experiment,the value of exponential in the similarity law of the nuclei number density should be determined by the nuclei size distribution of the water in the prototype experiment and the actual nuclei size distribution of the water in the model experiment.And a precondition is that the nuclei size distributions are similar.