Based on the hourly observational data during 2007-2016 from surface meteorological stations in China,this paper compares the influence of 3-hourly precipitation data,mainly from the Chinese Reanalysis-Interim(CRA-Int...Based on the hourly observational data during 2007-2016 from surface meteorological stations in China,this paper compares the influence of 3-hourly precipitation data,mainly from the Chinese Reanalysis-Interim(CRA-Interim),ECMWF Reanalysis 5(ERA5)and Japanese Reanalysis-55(JRA-55),on the simulation of the spatial and temporal distribution of regional precipitation in China and the bias distribution of the simulation.The results show that:(1)The three sets of reanalysis datasets can all reflect the basic spatial distribution characteristics of annual average precipitation in China.The simulation of topographic forced precipitation in complex terrain by using CRA-interim is more detailed,while CRA-interim has larger negative bias in central and East China,and larger positive bias in southwest China.(2)In terms of seasonal precipitation,the three sets of reanalysis datasets overestimate the precipitation in the heavy rainfall zone in spring and summer,especially in southwest China.According to CRA-interim,location of the rain belt in the First Rainy Season in South China is west by south,and the summer precipitation has positive bias in southwest and South China.(3)All of the reanalysis datasets can basically reflect the distribution difference of inter-annual variation of drought and flood,but overall the CRA-Interim generally shows negative bias,while the ERA5 and JRA-55 exhibit positive bias.(4)For the diurnal variation of precipitation in summer,all the reanalysis datasets perform better in simulating the daytime precipitation than in the night,and the bias of CRA-interim is less in the Southeast and Northeast than elsewhere.(5)The ERA5 generally performs the best on the evaluation of quantitative precipitation forecast,the JRA-55 is the next,followed by the CRA-Interim.The CRA-Interim has higher missing rate and lower threat score for heavy rains;however,at the level of downpour,the CRA-Interim performs slightly better.展开更多
It is claimed that open spaces in cities, such as parks, have an urban cooling effect. However, the relationship between urban parks and adjacent districts is still not explicit. In order to clarify the interaction be...It is claimed that open spaces in cities, such as parks, have an urban cooling effect. However, the relationship between urban parks and adjacent districts is still not explicit. In order to clarify the interaction between urban parks and their urban surroundings, this paper takes the Temple of Heaven Park (THP) as an example of a park station and focuses on analyzing the differences with a nearby urban station.THP is located in the center of Beijing, and the nearest urban station is Tian An Men. It is interesting that the cooling effect of THP reaches a peak and remains stable when its city background urban heat island (UHI) varies within a given range, but becomes unstable when the UHI goes beyond the range. This is called an enhanced cooling effect in this paper. As a result, the UHi intensities (UHIIs) are calculated in order to comprehend the role of the park cooling effect in the urban heating characteristics of Beijing. By comparison with five other park-district pairs, this paper attempts to identify the causes of the enhanced cooling effect. It is found that six park-district pairs consistently demonstrate a persistently stronger cooling rate during the night, and that the water coverage might be a key factor in enhancing the park cooling effect. Based on further investigation of the influence of surrounding UHIs on the park cooling effect, it is found that the UHII differences in park-district pairs show quasi-linear changes within a given range as the UHli of the surrounding district increases.展开更多
基金National Natural Science Foundation of China(42030611,91937301)Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)。
文摘Based on the hourly observational data during 2007-2016 from surface meteorological stations in China,this paper compares the influence of 3-hourly precipitation data,mainly from the Chinese Reanalysis-Interim(CRA-Interim),ECMWF Reanalysis 5(ERA5)and Japanese Reanalysis-55(JRA-55),on the simulation of the spatial and temporal distribution of regional precipitation in China and the bias distribution of the simulation.The results show that:(1)The three sets of reanalysis datasets can all reflect the basic spatial distribution characteristics of annual average precipitation in China.The simulation of topographic forced precipitation in complex terrain by using CRA-interim is more detailed,while CRA-interim has larger negative bias in central and East China,and larger positive bias in southwest China.(2)In terms of seasonal precipitation,the three sets of reanalysis datasets overestimate the precipitation in the heavy rainfall zone in spring and summer,especially in southwest China.According to CRA-interim,location of the rain belt in the First Rainy Season in South China is west by south,and the summer precipitation has positive bias in southwest and South China.(3)All of the reanalysis datasets can basically reflect the distribution difference of inter-annual variation of drought and flood,but overall the CRA-Interim generally shows negative bias,while the ERA5 and JRA-55 exhibit positive bias.(4)For the diurnal variation of precipitation in summer,all the reanalysis datasets perform better in simulating the daytime precipitation than in the night,and the bias of CRA-interim is less in the Southeast and Northeast than elsewhere.(5)The ERA5 generally performs the best on the evaluation of quantitative precipitation forecast,the JRA-55 is the next,followed by the CRA-Interim.The CRA-Interim has higher missing rate and lower threat score for heavy rains;however,at the level of downpour,the CRA-Interim performs slightly better.
基金supported by the National Natural Science Foundation of China[grant number 41375069]National Basic Research Program of China[grant number 2012CB957804]Young Talent Programming of China Meteorological Administration
文摘It is claimed that open spaces in cities, such as parks, have an urban cooling effect. However, the relationship between urban parks and adjacent districts is still not explicit. In order to clarify the interaction between urban parks and their urban surroundings, this paper takes the Temple of Heaven Park (THP) as an example of a park station and focuses on analyzing the differences with a nearby urban station.THP is located in the center of Beijing, and the nearest urban station is Tian An Men. It is interesting that the cooling effect of THP reaches a peak and remains stable when its city background urban heat island (UHI) varies within a given range, but becomes unstable when the UHI goes beyond the range. This is called an enhanced cooling effect in this paper. As a result, the UHi intensities (UHIIs) are calculated in order to comprehend the role of the park cooling effect in the urban heating characteristics of Beijing. By comparison with five other park-district pairs, this paper attempts to identify the causes of the enhanced cooling effect. It is found that six park-district pairs consistently demonstrate a persistently stronger cooling rate during the night, and that the water coverage might be a key factor in enhancing the park cooling effect. Based on further investigation of the influence of surrounding UHIs on the park cooling effect, it is found that the UHII differences in park-district pairs show quasi-linear changes within a given range as the UHli of the surrounding district increases.