Background:Nonalcoholic fatty liver disease(NAFLD)is a global health concern with the acid sphingomyelinase(ASM)/ceramide(CE)pathway and the NOD-like receptor family,pyrin domain-containing protein 3(NLRP3)inflammasom...Background:Nonalcoholic fatty liver disease(NAFLD)is a global health concern with the acid sphingomyelinase(ASM)/ceramide(CE)pathway and the NOD-like receptor family,pyrin domain-containing protein 3(NLRP3)inflammasome identified as pivotal players in lipid disorders and inflammation.This study explores the interaction mechanism between the ASM/CE pathway and NLRP3 in NAFLD cell models,aiming to understand the impact of amitriptyline(Ami),an ASM inhibitor,on lipid deposition and hepatocyte injury by regulating the ASM/CE-NLRP3 pathway.Methods:HepG2 and HL-7702 cells were exposed to free fatty acids(FFAs)to establish the NAFLD model.The cells were divided into 5 groups:control group,model group,Ami group,tumor necrosis factoralpha(TNF-α)group,and Ami+TNF-αgroup.Intracellular lipid droplets were visualized using Oil Red O staining,and Western blot analysis quantified ASM,NLRP3,and caspase 1 protein expression.Enzyme linked immunosorbent assay(ELISA)was measured CE and ASM levels,while qRT-PCR assessed mRNA expression.The apoptotic rate was evaluated by flow cytometry(FCM).Results:Following FFAs incubation,significant increases in ASM and CE levels were observed in HepG2 and HL-7702 cells,accompanied by elevated expression of NLRP3,and caspase 1,and IL-1β.TNF-αtreatment further amplified these indicators.Ami demonstrated a reduction in lipid deposition,suppressed ASM/CE pathway activation,downregulated NLRP3 and caspase 1 expression,and improved apoptosis.Additionally,MCC950,a selective inhibitor of the NLRP3,mitigated NLRP3,caspase 1,and IL-1βexpression,alleviating lipid deposition and apoptosis in the NAFLD cell model.Conclusion:The ASM/CE-NLRP3 pathway in NAFLD cells promotes hepatocyte steatosis,inflammation,and cell damage.Ami emerges as a promising therapeutic agent by inhibiting the ASM/CE-NLRP3 pathway,underscoring its potential as a key target for NAFLD treatment.展开更多
Calanus sinicus is a calanoid copepod widely distributed in coastal waters of China and Japan, and oversummering strategies may have major impacts on their population dynamics which in turn affect local marine food we...Calanus sinicus is a calanoid copepod widely distributed in coastal waters of China and Japan, and oversummering strategies may have major impacts on their population dynamics which in turn affect local marine food web structure. The abundance, stage composition, and sex composition of the planktonic copepod C. sinicus were studied from August to October 2002 in the southern Yellow Sea to understand how its population recovers from the over-summering state. Results showed that C. sinicus had low reproduction in August due to high temperature, except in waters near the Cheju Island with rich food and moderate bottom temperature, but the reproduction rates here decreased in September–October as food availability declined. When temperature dropped in September–October, C. sinicus actively propagated in coastal shallow waters. However, reproduction rates of C. sinicus individuals inhabiting the Yellow Sea Cold Water Mass(YSCWM) remained low during the three months of the study. The percentage of C. sinicus females was high during the reproductive period, which suggests that the sex composition of adult C. sinicus may reflect whether or not the population is in the reproductive mode.Numerous fifth copepodite stage(CV) C. sinicus aggregated in the YSCWM in a suspended developmental stage during the three months of this study, and they potentially served as the parental individuals for population development when conditions became optimal for reproduction later in the year.展开更多
The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection ...The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection unit and a hard X-ray detection unit.Both the soft X-ray detection unit and the hard X-ray detection unit include two collimators,two X-ray detectors(a silicon drift detector and a cadmium-zinc-telluride detector),and a processing circuit.Compared with similar instruments,the energy range of the SXD is wider(1–600 ke V)and the energy resolution is better(150 e V at 5.9 ke V,12%at 59.5 ke V,and 3%at 662 keV).展开更多
Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing....Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.展开更多
Organic thermoelectric(OTE)materials that can convert waste heat to electricity have aroused interests due to their unique advantages over traditional inorganic TE materials,such as light weight,mechanical flexibility...Organic thermoelectric(OTE)materials that can convert waste heat to electricity have aroused interests due to their unique advantages over traditional inorganic TE materials,such as light weight,mechanical flexibility,low thermal conductivity,and solution processability[1-4].In general,TE devices require both p-type and n-type semiconductors.The p-type polymers have been extensively studied,showing rapid advances,but there are few efficient n-type TE polymers[5,6].Therefore,the development of high-performance ndoped conjugated polymers is demanded.展开更多
Polymer semiconductors have aroused interests from both academic and industry due to their wide applications in electronic devices,such as organic thin-film transistors(OT-FTs)[1],polymer solar cells(PSCs)[2−6],organi...Polymer semiconductors have aroused interests from both academic and industry due to their wide applications in electronic devices,such as organic thin-film transistors(OT-FTs)[1],polymer solar cells(PSCs)[2−6],organic thermoelectrics(OTEs)[7−11],and perovskite solar cells(PVSCs)[12−14].To date,great efforts have been devoted to developing p-type poly-mer semiconductors,while the development of n-type poly-mers lags far behind.In fact,n-type polymers are essential for organic electronic devices.展开更多
Hypersonic vehicles emit strong infrared radiation from their high-temperature exhaust plume and body, which is critical for infrared early warning, tracking, and guidance. In this work, a comprehensive analysis is co...Hypersonic vehicles emit strong infrared radiation from their high-temperature exhaust plume and body, which is critical for infrared early warning, tracking, and guidance. In this work, a comprehensive analysis is conducted on the factors involved in air dissociation reaction within the shock layer of hypersonic missile heads, as well as the multi-component afterburning effect of the exhaust plume. A novel Reverse Monte Carlo Method(RMCM) is proposed for infrared radiation calculation, which utilizes two-dimensional Low-Discrepancy Sequences(LDS) to improve computational accuracy. The numerical calculations for a dagger-type missile show that afterburning reactions increase the temperature on the centerline of the outlet exhaust plume by about 1000 K. The total infrared radiation intensity of the missile is the highest in the 1–3 μm band, with the hightemperature wall of the nozzle being the primary source of solid radiation, and gas radiation primarily coming from H_(2)O. The radiation intensity of the missile exhaust plume in the 3–5 μm band is the highest, with radiation sources primarily coming from CO_(2), CO, and HCl. Afterburning reactions of the exhaust plume increase the total infrared radiation intensity of the missile by about 0.7times. These results can provide reference for the detection and guidance of hypersonic missiles.展开更多
Developing dopant-free hole-transporting materials(HTMs)for high-performance perovskite solar cells(PVSCs)has been a very active research topic in recent years since HTMs play a critical role in optimizing interfacial...Developing dopant-free hole-transporting materials(HTMs)for high-performance perovskite solar cells(PVSCs)has been a very active research topic in recent years since HTMs play a critical role in optimizing interfacial charge carrier kinetics and in turn determining device performance.Here,a novel dendritic engineering strategy is first utilized to design HTMs with a D-A type molecular framework,and diphenylamine and/or carbazole is selected as the building block for constructing dendrons.All HTMs show good thermal stability and excellent film morphology,and the key optoelectronic properties could be fine-tuned by varying the dendron structure.Among them,MPA-Cz-BTI and MCz-Cz-BTI exhibit an improved interfacial contact with the perovskite active layer,and non-radiative recombination loss and charge transport loss can be effectively suppressed.Consequently,high power conversion efficiencies(PCEs)of 20.8%and 21.35%are achieved for MPA-Cz-BTI and MCz-Cz-BTI based devices,respectively,accompanied by excellent long-term storage stability.More encouragingly,ultrahigh fill factors of 85.2%and 83.5%are recorded for both devices,which are among the highest values reported to date.This work demonstrates the great potential of dendritic materials as a new type of dopant-free HTMs for high-performance PVSCs with excellent FF.展开更多
The promising prospect of a terahertz metasurface in sensing and detection applications has attracted increasing attention because of its ability to overcome the classical diffraction limit and the enhancement of fiel...The promising prospect of a terahertz metasurface in sensing and detection applications has attracted increasing attention because of its ability to overcome the classical diffraction limit and the enhancement of field intensity.In this work,a novel scheme based on an all-silicon terahertz plasmon metasurface is proposed and experimentally demonstrated to be a highly sensitive biosensor for the Bacillus thuringiensis Cry1Ac toxin.The regression coefficients between Bacillus thuringiensis protein concentrations and the spectral resonance intensity and frequency were 0.8988 and 0.9238,respectively.The resonance amplitude variation and frequency shift of the metasurface were investigated in terms of both thickness and permittivity change of the analyte,which reflected the protein residue in the actual process.Moreover,the reliability and stability of the metasurface chip were verified by time period,temperature,and humidity control.These results promise the ability of the proposed metasurface chip as a Bacillus thuringiensis protein sensor with high sensitivity and stability.In addition,this novel device strategy provides opportunities for the advancement of terahertz functional applications in the fields of biochemical sensing and detection.展开更多
Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by X...Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by XPNAV-1 satellite, we study the possibility of correcting the frequency deviation of spaceborne atomic clocks using pulsar timing. According to the observational data in X-ray band and the timing model parameters from radio observations, the pre-fit timing residuals with a level of 67.66 μs are obtained. By fitting the slope of the timing residuals affected by the faked frequency-biased reference clock, we estimated successfully the relative frequency deviation of the reference clock. For a satellite clock with frequency deviation of the order about 10^(-12), a calibration accuracy with relative error of about 2% can be obtained from the Crab pulsar’s data for one year.The stability of the time scale based on Crab pulsar is about 10^(-12) for an interval of one year.展开更多
Solution-processed organic‒inorganic halide perovskite(OIHP)single crystals(SCs)have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost prepa...Solution-processed organic‒inorganic halide perovskite(OIHP)single crystals(SCs)have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost preparation.However,the energy resolution(ER)and stability of OIHP detectors still lag far behind those of melt-grown inorganic perovskite and commercial CdZnTe counterparts due to the absence of detector-grade high-quality OIHP SCs.Here,we reveal that the crystallinity and uniformity of OIHP SCs are drastically improved by relieving interfacial stress with a facial gel-confined solution growth strategy,thus enabling the direct preparation of large-area detector-grade SC wafers up to 4 cm with drastically suppressed electronic and ionic defects.The resultant radiation detectors show both a small dark current below 1 nA and excellent baseline stability of 4.0×10^(-8) nA cm^(-1) s^(-1) V^(-1),which are rarely realized in OIHP detectors.Consequently,a record high ER of 4.9% at 59.5 keV is achieved under a standard 241Am gamma-ray source with an ultralow operating bias of 5 V,representing the best gamma-ray spectroscopy performance among all solution-processed semiconductor radiation detectors ever reported.展开更多
To evaluate the spatio-temporal variations in the community structure and biodiversity of commercially important crustaceans in the Yellow Sea and the northern East China Sea(NECS),the seasonal and regional changes in...To evaluate the spatio-temporal variations in the community structure and biodiversity of commercially important crustaceans in the Yellow Sea and the northern East China Sea(NECS),the seasonal and regional changes in species composition,biomass structure,biodiversity and distribution of commercially important species were analyzed using bottom trawl survey data during 2014-2015.The results showed that the latitudinal gradient was obvious in species richness,dominant species and biodiversity.The indices of biodiversity increased with the decreasing latitude.When the sampling sites shifted south by one latitudinal degree,Margalefs richness index(D),Pielou's evenness index(J')and Shannon-Wiener diversity index(H')increased by 0.10.0.03 and 0.09,respectively.The biomass proportion of the cold-temperate species represented by Crangon affinis declined with the decreasing latitude,and the warm-temperate species represented by Ovalipes punctatus and Portunus trituberculatus in creased.Because of the growth regulatio n of crustaceans and the fishing moratorium,the biomass of commercially important crustaceans in the Yellow Sea and NECS was highest in October and August,respectively.Salinity had a more significant influence on H'of commercially important crustaceans than other environmental factors(including zooplankton density,sea bottom temperature and water depth).Overall,the results of this study contribute to a better understanding of community dynamics of crustaceans in the Yellow Sea and NECS,and provide evidence to verify the latitudinal gradient theory in biodiversity.展开更多
基金supported by the Initial Scientific Research Fund of the Talents Introduced in Nanjing Lishui People’s Hospital(Project 2021YJ02).
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is a global health concern with the acid sphingomyelinase(ASM)/ceramide(CE)pathway and the NOD-like receptor family,pyrin domain-containing protein 3(NLRP3)inflammasome identified as pivotal players in lipid disorders and inflammation.This study explores the interaction mechanism between the ASM/CE pathway and NLRP3 in NAFLD cell models,aiming to understand the impact of amitriptyline(Ami),an ASM inhibitor,on lipid deposition and hepatocyte injury by regulating the ASM/CE-NLRP3 pathway.Methods:HepG2 and HL-7702 cells were exposed to free fatty acids(FFAs)to establish the NAFLD model.The cells were divided into 5 groups:control group,model group,Ami group,tumor necrosis factoralpha(TNF-α)group,and Ami+TNF-αgroup.Intracellular lipid droplets were visualized using Oil Red O staining,and Western blot analysis quantified ASM,NLRP3,and caspase 1 protein expression.Enzyme linked immunosorbent assay(ELISA)was measured CE and ASM levels,while qRT-PCR assessed mRNA expression.The apoptotic rate was evaluated by flow cytometry(FCM).Results:Following FFAs incubation,significant increases in ASM and CE levels were observed in HepG2 and HL-7702 cells,accompanied by elevated expression of NLRP3,and caspase 1,and IL-1β.TNF-αtreatment further amplified these indicators.Ami demonstrated a reduction in lipid deposition,suppressed ASM/CE pathway activation,downregulated NLRP3 and caspase 1 expression,and improved apoptosis.Additionally,MCC950,a selective inhibitor of the NLRP3,mitigated NLRP3,caspase 1,and IL-1βexpression,alleviating lipid deposition and apoptosis in the NAFLD cell model.Conclusion:The ASM/CE-NLRP3 pathway in NAFLD cells promotes hepatocyte steatosis,inflammation,and cell damage.Ami emerges as a promising therapeutic agent by inhibiting the ASM/CE-NLRP3 pathway,underscoring its potential as a key target for NAFLD treatment.
基金The NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences under contract No.U1606404the National Natural Science Foundation of China under contract No.41230963+1 种基金the National Basic Research Program(973 program)of China under contract Nos 2011CB403604 and G1999043708the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020305
文摘Calanus sinicus is a calanoid copepod widely distributed in coastal waters of China and Japan, and oversummering strategies may have major impacts on their population dynamics which in turn affect local marine food web structure. The abundance, stage composition, and sex composition of the planktonic copepod C. sinicus were studied from August to October 2002 in the southern Yellow Sea to understand how its population recovers from the over-summering state. Results showed that C. sinicus had low reproduction in August due to high temperature, except in waters near the Cheju Island with rich food and moderate bottom temperature, but the reproduction rates here decreased in September–October as food availability declined. When temperature dropped in September–October, C. sinicus actively propagated in coastal shallow waters. However, reproduction rates of C. sinicus individuals inhabiting the Yellow Sea Cold Water Mass(YSCWM) remained low during the three months of the study. The percentage of C. sinicus females was high during the reproductive period, which suggests that the sex composition of adult C. sinicus may reflect whether or not the population is in the reproductive mode.Numerous fifth copepodite stage(CV) C. sinicus aggregated in the YSCWM in a suspended developmental stage during the three months of this study, and they potentially served as the parental individuals for population development when conditions became optimal for reproduction later in the year.
基金the China National Space Administration(CNSA)the Macao University of Science and Technology Foundation for their support of this paper。
文摘The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection unit and a hard X-ray detection unit.Both the soft X-ray detection unit and the hard X-ray detection unit include two collimators,two X-ray detectors(a silicon drift detector and a cadmium-zinc-telluride detector),and a processing circuit.Compared with similar instruments,the energy range of the SXD is wider(1–600 ke V)and the energy resolution is better(150 e V at 5.9 ke V,12%at 59.5 ke V,and 3%at 662 keV).
基金financial support from the National Natural Science Foundation of China (NSFC)(21805128)the National Natural Science Foundation of China (21774055)+3 种基金the financial support from the National Natural Science Foundation of China(21975260)the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)financial support of Guangdong Provincial Key Laboratory Program(2021B1212040001) from the Department of Science and Technology of Guangdong Provincethe NSFC-CNR exchange program of NSFC(22011530391)。
文摘Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.
基金the National Natural Science Foundation of China(22105004)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support+1 种基金the National Key Research and Development Program of China(2017YFA0206600)。
文摘Organic thermoelectric(OTE)materials that can convert waste heat to electricity have aroused interests due to their unique advantages over traditional inorganic TE materials,such as light weight,mechanical flexibility,low thermal conductivity,and solution processability[1-4].In general,TE devices require both p-type and n-type semiconductors.The p-type polymers have been extensively studied,showing rapid advances,but there are few efficient n-type TE polymers[5,6].Therefore,the development of high-performance ndoped conjugated polymers is demanded.
基金the Doctoral Research Initiation Foundation of Anhui Normal University(752091)L.Ding appreciates the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support.
文摘Polymer semiconductors have aroused interests from both academic and industry due to their wide applications in electronic devices,such as organic thin-film transistors(OT-FTs)[1],polymer solar cells(PSCs)[2−6],organic thermoelectrics(OTEs)[7−11],and perovskite solar cells(PVSCs)[12−14].To date,great efforts have been devoted to developing p-type poly-mer semiconductors,while the development of n-type poly-mers lags far behind.In fact,n-type polymers are essential for organic electronic devices.
基金supported by the National Defense Science and Technology Pre-Research Fund, China (No. KJXYY2019054/M51)。
文摘Hypersonic vehicles emit strong infrared radiation from their high-temperature exhaust plume and body, which is critical for infrared early warning, tracking, and guidance. In this work, a comprehensive analysis is conducted on the factors involved in air dissociation reaction within the shock layer of hypersonic missile heads, as well as the multi-component afterburning effect of the exhaust plume. A novel Reverse Monte Carlo Method(RMCM) is proposed for infrared radiation calculation, which utilizes two-dimensional Low-Discrepancy Sequences(LDS) to improve computational accuracy. The numerical calculations for a dagger-type missile show that afterburning reactions increase the temperature on the centerline of the outlet exhaust plume by about 1000 K. The total infrared radiation intensity of the missile is the highest in the 1–3 μm band, with the hightemperature wall of the nozzle being the primary source of solid radiation, and gas radiation primarily coming from H_(2)O. The radiation intensity of the missile exhaust plume in the 3–5 μm band is the highest, with radiation sources primarily coming from CO_(2), CO, and HCl. Afterburning reactions of the exhaust plume increase the total infrared radiation intensity of the missile by about 0.7times. These results can provide reference for the detection and guidance of hypersonic missiles.
基金the National Natural Science Foundation of China(21805128,21774055,61775091)Shenzhen Key Laboratory Project(ZDSYS201602261933302)+2 种基金Shenzhen Innovation Committee(JCYJ20180504165851864)Shenzhen Innovation Committee(JCYJ20170818141216288)the Seed Funding for Strategic Interdisciplinary Research Scheme of the University of Hong Kong。
文摘Developing dopant-free hole-transporting materials(HTMs)for high-performance perovskite solar cells(PVSCs)has been a very active research topic in recent years since HTMs play a critical role in optimizing interfacial charge carrier kinetics and in turn determining device performance.Here,a novel dendritic engineering strategy is first utilized to design HTMs with a D-A type molecular framework,and diphenylamine and/or carbazole is selected as the building block for constructing dendrons.All HTMs show good thermal stability and excellent film morphology,and the key optoelectronic properties could be fine-tuned by varying the dendron structure.Among them,MPA-Cz-BTI and MCz-Cz-BTI exhibit an improved interfacial contact with the perovskite active layer,and non-radiative recombination loss and charge transport loss can be effectively suppressed.Consequently,high power conversion efficiencies(PCEs)of 20.8%and 21.35%are achieved for MPA-Cz-BTI and MCz-Cz-BTI based devices,respectively,accompanied by excellent long-term storage stability.More encouragingly,ultrahigh fill factors of 85.2%and 83.5%are recorded for both devices,which are among the highest values reported to date.This work demonstrates the great potential of dendritic materials as a new type of dopant-free HTMs for high-performance PVSCs with excellent FF.
基金Natural Science Foundation of Shaanxi Province(2020JZ-48)Youth Innovation Team of Shaanxi Universities(21JP084)+1 种基金National Natural Science Foundation of China(31801257,61975163)Open Project of Key Laboratory of Engineering Dielectrics and Its Applications,Ministry of Education(KEY1805).
文摘The promising prospect of a terahertz metasurface in sensing and detection applications has attracted increasing attention because of its ability to overcome the classical diffraction limit and the enhancement of field intensity.In this work,a novel scheme based on an all-silicon terahertz plasmon metasurface is proposed and experimentally demonstrated to be a highly sensitive biosensor for the Bacillus thuringiensis Cry1Ac toxin.The regression coefficients between Bacillus thuringiensis protein concentrations and the spectral resonance intensity and frequency were 0.8988 and 0.9238,respectively.The resonance amplitude variation and frequency shift of the metasurface were investigated in terms of both thickness and permittivity change of the analyte,which reflected the protein residue in the actual process.Moreover,the reliability and stability of the metasurface chip were verified by time period,temperature,and humidity control.These results promise the ability of the proposed metasurface chip as a Bacillus thuringiensis protein sensor with high sensitivity and stability.In addition,this novel device strategy provides opportunities for the advancement of terahertz functional applications in the fields of biochemical sensing and detection.
基金supported by the National SKA Program of China(No.2020SKA0120103)the National Natural Science Foundation of China(Nos.U1831130 and U1531112).
文摘Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by XPNAV-1 satellite, we study the possibility of correcting the frequency deviation of spaceborne atomic clocks using pulsar timing. According to the observational data in X-ray band and the timing model parameters from radio observations, the pre-fit timing residuals with a level of 67.66 μs are obtained. By fitting the slope of the timing residuals affected by the faked frequency-biased reference clock, we estimated successfully the relative frequency deviation of the reference clock. For a satellite clock with frequency deviation of the order about 10^(-12), a calibration accuracy with relative error of about 2% can be obtained from the Crab pulsar’s data for one year.The stability of the time scale based on Crab pulsar is about 10^(-12) for an interval of one year.
基金supported by the National Natural Science Foundation of China(No.22179050,No.21875089,No.62075191,No.52003235,and No.61721005)the China Postdoctoral Science Foundation(No.2022T150251)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LR22F040003)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZFR003)the Fundamental Research Funds for the Central Universities(226-2022-00200).
文摘Solution-processed organic‒inorganic halide perovskite(OIHP)single crystals(SCs)have demonstrated great potential in ionizing radiation detection due to their outstanding charge transport properties and low-cost preparation.However,the energy resolution(ER)and stability of OIHP detectors still lag far behind those of melt-grown inorganic perovskite and commercial CdZnTe counterparts due to the absence of detector-grade high-quality OIHP SCs.Here,we reveal that the crystallinity and uniformity of OIHP SCs are drastically improved by relieving interfacial stress with a facial gel-confined solution growth strategy,thus enabling the direct preparation of large-area detector-grade SC wafers up to 4 cm with drastically suppressed electronic and ionic defects.The resultant radiation detectors show both a small dark current below 1 nA and excellent baseline stability of 4.0×10^(-8) nA cm^(-1) s^(-1) V^(-1),which are rarely realized in OIHP detectors.Consequently,a record high ER of 4.9% at 59.5 keV is achieved under a standard 241Am gamma-ray source with an ultralow operating bias of 5 V,representing the best gamma-ray spectroscopy performance among all solution-processed semiconductor radiation detectors ever reported.
基金supported by the National Key Research and Development Program of China under contract No.2018YFD0900902AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2017ASTCP-ES07Special Funds for Taishan Scholar Project of Shandong Province.We thank all colleagues for their help in collecting the survey data.
文摘To evaluate the spatio-temporal variations in the community structure and biodiversity of commercially important crustaceans in the Yellow Sea and the northern East China Sea(NECS),the seasonal and regional changes in species composition,biomass structure,biodiversity and distribution of commercially important species were analyzed using bottom trawl survey data during 2014-2015.The results showed that the latitudinal gradient was obvious in species richness,dominant species and biodiversity.The indices of biodiversity increased with the decreasing latitude.When the sampling sites shifted south by one latitudinal degree,Margalefs richness index(D),Pielou's evenness index(J')and Shannon-Wiener diversity index(H')increased by 0.10.0.03 and 0.09,respectively.The biomass proportion of the cold-temperate species represented by Crangon affinis declined with the decreasing latitude,and the warm-temperate species represented by Ovalipes punctatus and Portunus trituberculatus in creased.Because of the growth regulatio n of crustaceans and the fishing moratorium,the biomass of commercially important crustaceans in the Yellow Sea and NECS was highest in October and August,respectively.Salinity had a more significant influence on H'of commercially important crustaceans than other environmental factors(including zooplankton density,sea bottom temperature and water depth).Overall,the results of this study contribute to a better understanding of community dynamics of crustaceans in the Yellow Sea and NECS,and provide evidence to verify the latitudinal gradient theory in biodiversity.