In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presen...In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.展开更多
Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the t...Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers.展开更多
基金supported by the Open Fund of State Key Laboratory of High speed Railway Track Technology(2022YJ127-1)National Natural Science Foundation of China(52104125,41941018)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-304)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.
基金Project(51321065,51479191,11672360)supported by the National Natural Science Foundation of China。
文摘Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers.