A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground o...A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground on the uncertainty measure theory. Then the single-index measure function of sixteen influential factors and the calculation method of computing the index weight ground on entropy theory were respectively established. The value assignment of sixteen influential factors was carried out by the qualitative analysis and observational data, respectively, in succession. The sequence of fire danger class of four experimental coalfaces could be obtained by the computational aids of Matlab according to the confidence level criterion. Some conclusions that the fire danger class of the No.l, No.2 and No.3 coalface belongs to high criticality can be obtained. But the fire danger class of the No.4 coalface belongs to higher criticality. The fire danger class of the No.4 coalface is more than that of the No.2 coalface. The fire danger class of the No.2 coalface is more than that of the No.1 coalface. Finally, the fire danger class of the No.1 coalface is more than that of the No.3 coalface.展开更多
In order to apply ultra-fine water mist technology on spontaneous coal combustion in the goaf of a coal mine, we built a small scale compartment with ultra-fine water mist for restraining coal combustion in a confined...In order to apply ultra-fine water mist technology on spontaneous coal combustion in the goaf of a coal mine, we built a small scale compartment with ultra-fine water mist for restraining coal combustion in a confined space and then investigated the restraining efficiency and related factors. The study obtained the following results: a descending rate of heat release, an increase in 02, the production of CO2 decreased gradually, while the production of CO increased dramatically and quickly and then decreased; ultimately it tended to become stable after the discharge of an ultra-fine water mist. The technology showed that the ultra-fine water mist can effectively reduce the heat release rate of coal and the rate to generate components. We found that the restraining effect relied on the mist flux, the discharge time and other factors. A sufficient amount of mist has a better effect compared to an insufficient amount of mist. To combat coal combustion, the greater the discharge time, the better coal flames are extinguished.展开更多
基金Supported by the National Foundation of China(50974055)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0618)Henan Province Basic and Leading-edge Technology Research Program(082300463205)
文摘A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground on the uncertainty measure theory. Then the single-index measure function of sixteen influential factors and the calculation method of computing the index weight ground on entropy theory were respectively established. The value assignment of sixteen influential factors was carried out by the qualitative analysis and observational data, respectively, in succession. The sequence of fire danger class of four experimental coalfaces could be obtained by the computational aids of Matlab according to the confidence level criterion. Some conclusions that the fire danger class of the No.l, No.2 and No.3 coalface belongs to high criticality can be obtained. But the fire danger class of the No.4 coalface belongs to higher criticality. The fire danger class of the No.4 coalface is more than that of the No.2 coalface. The fire danger class of the No.2 coalface is more than that of the No.1 coalface. Finally, the fire danger class of the No.1 coalface is more than that of the No.3 coalface.
基金Project 50274061 supported by the National Natural Science Foundation of Chinaprovided by the NSFC (50274061)+3 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT0618)the Henan Province Basic and Lead-ing-edge Technology Research Program (082300 463205 and 072300420180)the Program for New Century Excellent Talents in University of Henan Province (2005HANCET-05) the Henan Poly-technic University Innovation Funds of Graduate Student Scientific Dissertation (M-20) is gratefully acknowledged
文摘In order to apply ultra-fine water mist technology on spontaneous coal combustion in the goaf of a coal mine, we built a small scale compartment with ultra-fine water mist for restraining coal combustion in a confined space and then investigated the restraining efficiency and related factors. The study obtained the following results: a descending rate of heat release, an increase in 02, the production of CO2 decreased gradually, while the production of CO increased dramatically and quickly and then decreased; ultimately it tended to become stable after the discharge of an ultra-fine water mist. The technology showed that the ultra-fine water mist can effectively reduce the heat release rate of coal and the rate to generate components. We found that the restraining effect relied on the mist flux, the discharge time and other factors. A sufficient amount of mist has a better effect compared to an insufficient amount of mist. To combat coal combustion, the greater the discharge time, the better coal flames are extinguished.