Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are d...Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are differences, and even contradictions, between the cognition and behavior of AI systems and humans. With the goal of achieving general AI, this study contains a review of the role of cognitive science in inspiring the development of the three mainstream academic branches of AI based on the three-layer framework proposed by David Marr, and the limitations of the current development of AI are explored and analyzed. The differences and inconsistencies between the cognition mechanisms of the human brain and the computation mechanisms of AI systems are analyzed. They are found to be the cause of the differences and contradictions between the cognition and behavior of AI systems and humans. Additionally, eight important research directions and their scientific issues that need to focus on braininspired AI research are proposed: highly imitated bionic information processing, a large-scale deep learning model that balances structure and function, multi-granularity joint problem solving bidirectionally driven by data and knowledge, AI models that simulate specific brain structures, a collaborative processing mechanism with the physical separation of perceptual processing and interpretive analysis, embodied intelligence that integrates the brain cognitive mechanism and AI computation mechanisms,intelligence simulation from individual intelligence to group intelligence(social intelligence), and AI-assisted brain cognitive intelligence.展开更多
生物视觉系统的研究一直是计算机视觉算法的重要灵感来源。有许多计算机视觉算法与生物视觉研究具有不同程度的对应关系,包括从纯粹的功能启发到用于解释生物观察的物理模型的方法。从视觉神经科学向计算机视觉界传达的经典观点是视觉...生物视觉系统的研究一直是计算机视觉算法的重要灵感来源。有许多计算机视觉算法与生物视觉研究具有不同程度的对应关系,包括从纯粹的功能启发到用于解释生物观察的物理模型的方法。从视觉神经科学向计算机视觉界传达的经典观点是视觉皮层分层层次处理的结构。而人工神经网络设计的灵感来源正是视觉系统中的分层结构设计。深度神经网络在计算机视觉和机器学习等领域都占据主导地位。许多神经科学领域的学者也开始将深度神经网络应用在生物视觉系统的计算建模中。深度神经网络多层的结构设计加上误差的反向传播训练,使得它可以拟合绝大多数函数。因此,深度神经网络在学习视觉刺激与神经元响应的映射关系并取得目前性能最好的模型同时,网络内部的单元甚至学习出生物视觉系统子单元的表达。本文将从视网膜等初级视觉皮层和高级视觉皮层(如,视觉皮层第4区(visual area 4,V4)和下颞叶皮层(inferior temporal,IT))分别介绍基于神经网络的视觉系统编码模型。主要内容包括:1)有关视觉系统模型的概念与定义;2)初级视觉系统的神经网络预测模型;3)任务驱动的高级视觉皮层编码模型。最后本文还将介绍最新有关无监督学习的神经编码模型,并展望基于神经网络的视觉系统编码模型的技术挑战与可能的发展方向。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 62221005, 61936001, and 62376045)the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2021ycjhbgzxm0013)the Project of Chongqing Municipal Education Commission, China (Grant No. HZ2021008)。
文摘Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are differences, and even contradictions, between the cognition and behavior of AI systems and humans. With the goal of achieving general AI, this study contains a review of the role of cognitive science in inspiring the development of the three mainstream academic branches of AI based on the three-layer framework proposed by David Marr, and the limitations of the current development of AI are explored and analyzed. The differences and inconsistencies between the cognition mechanisms of the human brain and the computation mechanisms of AI systems are analyzed. They are found to be the cause of the differences and contradictions between the cognition and behavior of AI systems and humans. Additionally, eight important research directions and their scientific issues that need to focus on braininspired AI research are proposed: highly imitated bionic information processing, a large-scale deep learning model that balances structure and function, multi-granularity joint problem solving bidirectionally driven by data and knowledge, AI models that simulate specific brain structures, a collaborative processing mechanism with the physical separation of perceptual processing and interpretive analysis, embodied intelligence that integrates the brain cognitive mechanism and AI computation mechanisms,intelligence simulation from individual intelligence to group intelligence(social intelligence), and AI-assisted brain cognitive intelligence.
文摘生物视觉系统的研究一直是计算机视觉算法的重要灵感来源。有许多计算机视觉算法与生物视觉研究具有不同程度的对应关系,包括从纯粹的功能启发到用于解释生物观察的物理模型的方法。从视觉神经科学向计算机视觉界传达的经典观点是视觉皮层分层层次处理的结构。而人工神经网络设计的灵感来源正是视觉系统中的分层结构设计。深度神经网络在计算机视觉和机器学习等领域都占据主导地位。许多神经科学领域的学者也开始将深度神经网络应用在生物视觉系统的计算建模中。深度神经网络多层的结构设计加上误差的反向传播训练,使得它可以拟合绝大多数函数。因此,深度神经网络在学习视觉刺激与神经元响应的映射关系并取得目前性能最好的模型同时,网络内部的单元甚至学习出生物视觉系统子单元的表达。本文将从视网膜等初级视觉皮层和高级视觉皮层(如,视觉皮层第4区(visual area 4,V4)和下颞叶皮层(inferior temporal,IT))分别介绍基于神经网络的视觉系统编码模型。主要内容包括:1)有关视觉系统模型的概念与定义;2)初级视觉系统的神经网络预测模型;3)任务驱动的高级视觉皮层编码模型。最后本文还将介绍最新有关无监督学习的神经编码模型,并展望基于神经网络的视觉系统编码模型的技术挑战与可能的发展方向。