In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approach...The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.展开更多
This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mu...This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.展开更多
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金supported by National Key Research and Development Plan of China (No. 2018YFF01014204)"Fundamental Research Program of China (No. 2015CB057906)"
文摘The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.
基金support of the National Natural Science Foundation of China (Grant Nos.51379007,41130742)the support of the Chinese Fundamental Research (973)Program through the Grant No.2013CB036006
文摘This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.