To improve the removal efficiency of such submicron inclusions,we designed an argon blowing method for an RH facility based on mathematical simulations.The effect of the argon blowing on the liquid steel flow and the ...To improve the removal efficiency of such submicron inclusions,we designed an argon blowing method for an RH facility based on mathematical simulations.The effect of the argon blowing on the liquid steel flow and the movement of submicron inclusions was studied using the k-ε flow model coupled with the DPM model for inclusion movement based on fluid computational dynamics in FLUENT.It was found that a more uniform argon flow can be achieved in the up-leg snorkel with a new nozzle position and inner diameter,which resulted in a favorable up-lifting and mixing movement.The new design also increased the circulation rate of molten steel in the RH chamber.The increased turbulent kinetic energy and turbulent dispersing rate enhanced the collision probability of submicron inclusions,which results in an improved removal for 0.5-1 μm inclusions.The proposed RH facility could increase the removal rate of submicron inclusions from the original 57.1% to 66.4%,which improves the magnetic properties of non-oriented silicon steel.展开更多
An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By ut...An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By utilizing the radio access units(RAU) selection based on large-scale fading,the proposed algorithm decreases enormously the computational complexity. Based on the characteristics of distributed systems,an improved particle swarm optimization(PSO) has been proposed for the antenna selection after the RAU selection. In order to apply the improved PSO algorithm better in antenna selection,a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity. The proposed algorithm can make full use of the advantages of D-MIMO systems,and achieve near-optimal performance in terms of channel capacity with low computational complexity.展开更多
基金Funded by the National Natural Science Foundation of China(No.51804231)the Key R&D Program of Hubei Province(No.2020BAA027)。
文摘To improve the removal efficiency of such submicron inclusions,we designed an argon blowing method for an RH facility based on mathematical simulations.The effect of the argon blowing on the liquid steel flow and the movement of submicron inclusions was studied using the k-ε flow model coupled with the DPM model for inclusion movement based on fluid computational dynamics in FLUENT.It was found that a more uniform argon flow can be achieved in the up-leg snorkel with a new nozzle position and inner diameter,which resulted in a favorable up-lifting and mixing movement.The new design also increased the circulation rate of molten steel in the RH chamber.The increased turbulent kinetic energy and turbulent dispersing rate enhanced the collision probability of submicron inclusions,which results in an improved removal for 0.5-1 μm inclusions.The proposed RH facility could increase the removal rate of submicron inclusions from the original 57.1% to 66.4%,which improves the magnetic properties of non-oriented silicon steel.
基金Supported by the National Natural Science Foundation of China(No.61201086,61272495)the China Scholarship Council(No.201506375060)+1 种基金the Planned Science and Technology Project of Guangdong Province(No.2013B090500007) the Dongguan Project on the Integration of Industry,Education and Research(No.2014509102205)
文摘An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By utilizing the radio access units(RAU) selection based on large-scale fading,the proposed algorithm decreases enormously the computational complexity. Based on the characteristics of distributed systems,an improved particle swarm optimization(PSO) has been proposed for the antenna selection after the RAU selection. In order to apply the improved PSO algorithm better in antenna selection,a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity. The proposed algorithm can make full use of the advantages of D-MIMO systems,and achieve near-optimal performance in terms of channel capacity with low computational complexity.