The forest headwater streams are important hubs for connecting terrestrial and aquatic ecosystems,with plant litter and sediments as the major carriers for material migrations;however,until now we knew little about th...The forest headwater streams are important hubs for connecting terrestrial and aquatic ecosystems,with plant litter and sediments as the major carriers for material migrations;however,until now we knew little about the dynamics of trace elements such as iron(Fe)and aluminum(Al)in forest headwater streams.Here,we quantitatively identified the spatiotemporal dynamics of Fe and Al storages in plant litter and sediments and their influencing factors in a subtropical forest headwater stream,and assessed the potential pollution risk.The results showed that:(1)the mean concentrations of Fe and Al in plant litter(sediments)were 5.48 and 8.46(7.39 and 47.47)g·kg^(-1),and the mean storages of Fe and Al in plant litter(sediments)were 0.26 and 0.43(749.04 and 5030.90)g·m^(-2),respectively;(2)the storages of Fe and Al in plant litter and sediments significantly fluctuated from January to December,and showed a decreasing pattern from the source to mouth;and(3)storages of Fe and Al had no significant correlation with riparian forest type and the present of tributary and the Fe and Al storages in plant litter were mainly affected by water temperature and water alkalinity,and their storages in sediments were mainly affected by water temperature and frequency of rainfall;and(4)there were no anthropogenic pollution in Fe and Al in the forest headwater stream.Our study revealed the primary factors of concentrations and storages of Fe and Al in plant litter and sediments in a forest headwater stream,which will improve our understanding of the role of headwater streams in forest nutrient storage and cycling along with hydrological processes.展开更多
The effect of nitrogen(N)fertilizer on the development of maize kernels has yet to be fully explored.MicroRNA-mRNA analyses could help advance our understanding of how kernels respond to N.This study analyzed the morp...The effect of nitrogen(N)fertilizer on the development of maize kernels has yet to be fully explored.MicroRNA-mRNA analyses could help advance our understanding of how kernels respond to N.This study analyzed the morphological,physiological,and transcriptomic changes in maize kernels under different N rates(0,100,200,and 300 kg ha–1).The result showed that increasing N application significantly increased maize grains’fresh and dry weight until N reached 200 kg ha–1.Higher levels of indole-3-acetic acid,cytokinin,gibberellin,and a lower level of ethylene were associated with increased N applications.We obtained 31 differentially expressed genes(DEGs)in hormone synthesis and transduction,and 9 DEGs were regulated by 14 differentially expressed microRNAs(DEMIs)in 26 pairs.The candidate DEGs and DEMIs provide valuable insight for manipulating grain filling under different N rates.展开更多
基金financially supported by the National Natural Science Foundation of China(32271633)founded by the National Natural Science Foundation of China(32201342)+1 种基金Natural Science Foundation of Fujian Province(2022J01642)supported by the National Natural Science Foundation of China(32171641)。
文摘The forest headwater streams are important hubs for connecting terrestrial and aquatic ecosystems,with plant litter and sediments as the major carriers for material migrations;however,until now we knew little about the dynamics of trace elements such as iron(Fe)and aluminum(Al)in forest headwater streams.Here,we quantitatively identified the spatiotemporal dynamics of Fe and Al storages in plant litter and sediments and their influencing factors in a subtropical forest headwater stream,and assessed the potential pollution risk.The results showed that:(1)the mean concentrations of Fe and Al in plant litter(sediments)were 5.48 and 8.46(7.39 and 47.47)g·kg^(-1),and the mean storages of Fe and Al in plant litter(sediments)were 0.26 and 0.43(749.04 and 5030.90)g·m^(-2),respectively;(2)the storages of Fe and Al in plant litter and sediments significantly fluctuated from January to December,and showed a decreasing pattern from the source to mouth;and(3)storages of Fe and Al had no significant correlation with riparian forest type and the present of tributary and the Fe and Al storages in plant litter were mainly affected by water temperature and water alkalinity,and their storages in sediments were mainly affected by water temperature and frequency of rainfall;and(4)there were no anthropogenic pollution in Fe and Al in the forest headwater stream.Our study revealed the primary factors of concentrations and storages of Fe and Al in plant litter and sediments in a forest headwater stream,which will improve our understanding of the role of headwater streams in forest nutrient storage and cycling along with hydrological processes.
基金supported by the Major Special Research Projects in Gansu Province,China(22ZD6NA009)the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2022-Z02)+1 种基金the National Natural Science Foundation of China(32260549)the National Key R&D Program of China(2022YFD1900300)。
文摘The effect of nitrogen(N)fertilizer on the development of maize kernels has yet to be fully explored.MicroRNA-mRNA analyses could help advance our understanding of how kernels respond to N.This study analyzed the morphological,physiological,and transcriptomic changes in maize kernels under different N rates(0,100,200,and 300 kg ha–1).The result showed that increasing N application significantly increased maize grains’fresh and dry weight until N reached 200 kg ha–1.Higher levels of indole-3-acetic acid,cytokinin,gibberellin,and a lower level of ethylene were associated with increased N applications.We obtained 31 differentially expressed genes(DEGs)in hormone synthesis and transduction,and 9 DEGs were regulated by 14 differentially expressed microRNAs(DEMIs)in 26 pairs.The candidate DEGs and DEMIs provide valuable insight for manipulating grain filling under different N rates.