Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex par...Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter,we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption...Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracte...Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracted SBMs from soybeans produced in the USA,Brazil,and China were selected.In Exp.1,eight different diets were created:a nitrogen(N)-free diet and 7 experimental diets containing SBM from different origins as the only N source.Eight non-pregnant,multiparous sows were arranged in an 8×8 Latin square design(8 periods and 8 diets).In Exp.2,the diet formula was the same as in Exp.1.Eight gestating sows(parity 3)were assigned to 4 different diets in a replicated 4×3 Youden square design(three periods and four diets)in mid-gestation and again in late-gestation stages.Results When fed to non-pregnant and late-gestating sows,the standardized ileal digestibility(SID)of CP and most AAs from different SBM were not significantly different(P>0.05).When fed to mid-gestating sows,the SID values for Arg,His,Lys,Phe,Cys,Gly,Ser,and Tyr in SBM 1 were lower than in SBM 4 and 5(P<0.05),whereas SID for Leu from SBM 5 was higher than in SBM 1 and 4(P<0.05).SID values for Ile,Ala,and Asp from SBM 4 were lower than in SBM 1 and 5(P<0.05).Sows had significantly greater SID values for Lys,Ala,and Asp during mid-gestation when compared with late-gestation stages(P<0.05).Mid-gestating sows had greater SID value for Val and lower SID value for Tyr when compared with non-pregnant and late-gestating sows(P<0.01),whereas non-pregnant sows had significantly greater SID value for Met when compared with gestating sows(P<0.01).Conclusions When fed to mid-gestating sows,the SID values for most AAs varied among SBM samples.The SID values for Lys,Met,Val,Ala,Asp,and Tyr in SBM were affected by sow gestation stages.Our findings provide a cornerstone for accurate SBM use in sow diets.展开更多
Recently,a study on a 0.05 T,low-cost,low-power,and computing-driven shielding-free ultra-low-field(ULF)magnetic resonance imaging(MRI)scannerwas published.This work enhances the image quality of MRI and reduces the s...Recently,a study on a 0.05 T,low-cost,low-power,and computing-driven shielding-free ultra-low-field(ULF)magnetic resonance imaging(MRI)scannerwas published.This work enhances the image quality of MRI and reduces the scanning time based on deep learning methods,which is of great significance to enhancing the popularization and availability of MRI[1](https://www.science.org/doi/abs/10.1126/science.adm7168).展开更多
BACKGROUND Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer.Incisional surgical site infection(SSI)is a common complic...BACKGROUND Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer.Incisional surgical site infection(SSI)is a common complication after ileostomy closure.AIM To evaluate the efficacy and safety of the micro-power negative pressure wound technique(MPNPWT)in preventing incisional SSI.METHODS This was a prospective,randomized controlled clinical trial conducted at a single center.A total of 101 consecutive patients who underwent ileostomy closure after rectal cancer surgery with a prophylactic ileostomy were enrolled from January 2019 to December 2021.Patients were randomly allocated into an MPNPWT group and a control group.The MPNPWT group underwent intermittent suturing of the surgical incision with 2-0 Prolene and was covered with a micro-power negative pressure dressing.The surgical outcomes were compared between the MPNPWT(n=50)and control(n=51)groups.Risk factors for incisional SSI were identified using logistic regression.RESULTS There were no differences in baseline characteristics between the MPNPWT(n=50)and control groups(n=51).The incisional SSI rate was significantly higher in the control group than in the MPNPWT group(15.7%vs 2.0%,P=0.031).However,MPNPWT did not affect other surgical outcomes,including intra-abdominal complications,operative time,and blood loss.Postoperative hospital stay length and hospitalization costs did not differ significantly between the two groups(P=0.069 and 0.843,respectively).None of the patients experienced adverse effects of MPNPWT,including skin allergy,dermatitis,and pain.MPNPWT also helped heal the infected incision.Our study indicated that MPNPWT was an independent protective factor[odds ratio(OR)=0.005,P=0.025)]and diabetes was a risk factor(OR=26.575,P=0.029)for incisional SSI.CONCLUSION MPNPWT is an effective and safe way to prevent incisional SSI after loop ileostomy closure.展开更多
Tencel fiber, as a new type of green environmental protection fiber, is drawing attention from the society and people’s favorite. In paper, the spinning process and properties of tencel yarn were studied. Also tradit...Tencel fiber, as a new type of green environmental protection fiber, is drawing attention from the society and people’s favorite. In paper, the spinning process and properties of tencel yarn were studied. Also traditional cotton yarn was tested and compared to understand tencel better as they are now both widely used in apparel. Compared with cotton yarn of the same count, the weight CV of tencel quality is lower, while the twist CV is higher;breaking elongation of tencel yarn is larger, while CV of breaking elongation of tencel yarn is slightly higher;unevenness of tencel spinning yarn is lower.展开更多
The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promi...The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering.展开更多
When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic fi...When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.展开更多
Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-seq...Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-sequenced data of 2214 soybean accessions,including 221 wild soybean,1132 landrace cultivars and 861 improved soybean lines,we identified 115,275 deleterious single-nucleotide polymorphisms(SNPs).Numbers of deleterious alleles increased from wild soybeans to landraces and decreased from landraces to modern improved lines.Genes in selective-sweep regions showed fewer deleterious mutations than the remaining genes.Deleterious mutations explained 4.3%-48%more phenotypic variation than randomly selected SNPs for resistance to soybean cyst nematode race 2(SCN2),soybean cyst nematode race 3(SCN3)and soybean mosaic virus race 3(SMV3).These findings illustrate how mutation load has shifted during soybean domestication,expansion and improvement and provide candidate sites for breeding out deleterious mutations in soybean by genome editing and/or conventional breeding focused on the selection of progeny with fewer deleterious alleles.展开更多
A four-stage cascaded variable optical attenuator(VOA)with a large attenuation range is presented.The VOA is based on a Mach–Zehnder interferometer(MZI)and fabricated in a silica-based planar lightwave circuit(PLC)pl...A four-stage cascaded variable optical attenuator(VOA)with a large attenuation range is presented.The VOA is based on a Mach–Zehnder interferometer(MZI)and fabricated in a silica-based planar lightwave circuit(PLC)platform.The thermo-optic effect is used to achieve intensity modulation.The measured maximum attenuation of the four-stage cascaded VOA is 88.38 d B.The chip is also tested in a quantum key distribution(QKD)system to generate signal and decoy states.The mean photon number after attenuation of the four-stage cascaded VOA is less than 0.1,which can meet the requirement of QKD.展开更多
We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and ...We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.展开更多
In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Sen...In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list.展开更多
<strong>Objective:</strong> The purpose of this study was to explore the clinical efficacy and security of the treatment of popliteal cyst through radiofrequency thermocoagulation (RFT) under ultrasound gu...<strong>Objective:</strong> The purpose of this study was to explore the clinical efficacy and security of the treatment of popliteal cyst through radiofrequency thermocoagulation (RFT) under ultrasound guidance. <strong>Methods:</strong> The clinical data of 35 patients with popliteal cyst, who were treated by RFT under ultrasound guidance from June 2019 to June 2020, were retrospectively analyzed. The Visual Analogue Scores (VAS) and the size of cyst before and after treatment were recorded at the first month, the third month, the sixth month. After six months, the recovery rate of Rauschning and Lindgren classification (R-L classification) level 0, 0 - I were counted. All the complications of the patients were observed. <strong>Results:</strong> 32 patients were followed up for six months. The scores and cyst sizes of each patient before and after the treatment were on a normal distribution curve. There was no significant difference in VAS scores before and after the treatment (P > 0.05). However, there was a significant difference in cyst sizes before and after the treatment (P < 0.05). Moreover, there was no significant difference in VAS scores and cyst sizes in each period after treatment (P > 0.05). According to the R-L classification in 6 months after treatment: the recovery rate of class 0 was 62.5% and class 0 - I level was 87.5%. There were no serious complications in the process. <strong>Conclusion:</strong> Treatment of popliteal cyst through RFT under ultrasound guidance is a simple, easy, reliable method that is worthy of clinical promotion.展开更多
基金supported by the National Key R&D Program of China (Grant No. 2021YFB3202800)the National Natural Science Foundation of China (Grant No. 12174373)+2 种基金the Chinese Academy of Sciences (Grant No. GJJSTD20200001)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302200)Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)。
文摘Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter,we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-EYIT-23-07)。
文摘Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
基金funded by the National Key R&D Program of China(No.2021YFD1300202)the nutritional value evaluation and parameter establishment of protein feedstuffs for sowsthe Ministry of Agriculture and Rural Affairs of the People’s Republic of China(125D0203-16190295)the Major Scientific and Technological Special Project of Sichuan Province(No.2021ZDZX0009)。
文摘Background Two studies were designed to determine standard ileal crude protein(CP)and amino acid(AA)digestibility of soybean meal(SBM)from different origins fed to non-pregnant and pregnant sows.Seven solvent-extracted SBMs from soybeans produced in the USA,Brazil,and China were selected.In Exp.1,eight different diets were created:a nitrogen(N)-free diet and 7 experimental diets containing SBM from different origins as the only N source.Eight non-pregnant,multiparous sows were arranged in an 8×8 Latin square design(8 periods and 8 diets).In Exp.2,the diet formula was the same as in Exp.1.Eight gestating sows(parity 3)were assigned to 4 different diets in a replicated 4×3 Youden square design(three periods and four diets)in mid-gestation and again in late-gestation stages.Results When fed to non-pregnant and late-gestating sows,the standardized ileal digestibility(SID)of CP and most AAs from different SBM were not significantly different(P>0.05).When fed to mid-gestating sows,the SID values for Arg,His,Lys,Phe,Cys,Gly,Ser,and Tyr in SBM 1 were lower than in SBM 4 and 5(P<0.05),whereas SID for Leu from SBM 5 was higher than in SBM 1 and 4(P<0.05).SID values for Ile,Ala,and Asp from SBM 4 were lower than in SBM 1 and 5(P<0.05).Sows had significantly greater SID values for Lys,Ala,and Asp during mid-gestation when compared with late-gestation stages(P<0.05).Mid-gestating sows had greater SID value for Val and lower SID value for Tyr when compared with non-pregnant and late-gestating sows(P<0.01),whereas non-pregnant sows had significantly greater SID value for Met when compared with gestating sows(P<0.01).Conclusions When fed to mid-gestating sows,the SID values for most AAs varied among SBM samples.The SID values for Lys,Met,Val,Ala,Asp,and Tyr in SBM were affected by sow gestation stages.Our findings provide a cornerstone for accurate SBM use in sow diets.
文摘Recently,a study on a 0.05 T,low-cost,low-power,and computing-driven shielding-free ultra-low-field(ULF)magnetic resonance imaging(MRI)scannerwas published.This work enhances the image quality of MRI and reduces the scanning time based on deep learning methods,which is of great significance to enhancing the popularization and availability of MRI[1](https://www.science.org/doi/abs/10.1126/science.adm7168).
基金Supported by the Zhejiang Provincial Natural Science Foundation of China,No.LQ20H260002.
文摘BACKGROUND Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer.Incisional surgical site infection(SSI)is a common complication after ileostomy closure.AIM To evaluate the efficacy and safety of the micro-power negative pressure wound technique(MPNPWT)in preventing incisional SSI.METHODS This was a prospective,randomized controlled clinical trial conducted at a single center.A total of 101 consecutive patients who underwent ileostomy closure after rectal cancer surgery with a prophylactic ileostomy were enrolled from January 2019 to December 2021.Patients were randomly allocated into an MPNPWT group and a control group.The MPNPWT group underwent intermittent suturing of the surgical incision with 2-0 Prolene and was covered with a micro-power negative pressure dressing.The surgical outcomes were compared between the MPNPWT(n=50)and control(n=51)groups.Risk factors for incisional SSI were identified using logistic regression.RESULTS There were no differences in baseline characteristics between the MPNPWT(n=50)and control groups(n=51).The incisional SSI rate was significantly higher in the control group than in the MPNPWT group(15.7%vs 2.0%,P=0.031).However,MPNPWT did not affect other surgical outcomes,including intra-abdominal complications,operative time,and blood loss.Postoperative hospital stay length and hospitalization costs did not differ significantly between the two groups(P=0.069 and 0.843,respectively).None of the patients experienced adverse effects of MPNPWT,including skin allergy,dermatitis,and pain.MPNPWT also helped heal the infected incision.Our study indicated that MPNPWT was an independent protective factor[odds ratio(OR)=0.005,P=0.025)]and diabetes was a risk factor(OR=26.575,P=0.029)for incisional SSI.CONCLUSION MPNPWT is an effective and safe way to prevent incisional SSI after loop ileostomy closure.
文摘Tencel fiber, as a new type of green environmental protection fiber, is drawing attention from the society and people’s favorite. In paper, the spinning process and properties of tencel yarn were studied. Also traditional cotton yarn was tested and compared to understand tencel better as they are now both widely used in apparel. Compared with cotton yarn of the same count, the weight CV of tencel quality is lower, while the twist CV is higher;breaking elongation of tencel yarn is larger, while CV of breaking elongation of tencel yarn is slightly higher;unevenness of tencel spinning yarn is lower.
基金financial support from the National Key Research and Development Program of China,China (Grant No.2022YFB4200203)the Key project of Nature Science Foundation of Tianjin,China (22JCZDJC00120)the 111 Project,China(B16027)。
文摘The concept of tandem solar cells(TSCs) is an effective way to substantially further improve the efficiency of solar cells. The excellent optoelectronic properties and bandgap tunability of perovskites make them promising for constructing efficient TSCs. Currently, TSCs based on perovskite have been extensively studied. Besides, the performance of organic solar cells has been greatly improved recently due to the wider and more efficient spectral utilization. Accordingly, research on perovskite/organic TSCs has garnered significant attention. It has potential application advantages in emerging fields such as wearable devices by virtue of flexibility. In addition, orthogonal solvents can be adopted to realize the separate preparation of subcells with the solution method, which greatly reduces fabrication complexity;moreover, fabrication with less equipment significantly cuts down the device cost. Meanwhile, organics with more adjustability on the optoelectronic properties provide more tuning strategies for high-performance perovskite/organic TSCs. However, comprehensive and timely reviews on the perovskite/organic TSCs are deficient. Therefore, we expect to accomplish a review on this innovative TSCs to facilitate researchers with a deeper understanding of perovskite/organic TSCs. Herein, we firstly review the significant progress of perovskite and organic solar cells. Then, current achievements of perovskite/organic TSCs are summarized and introduced with a particular focus on the device structure design. Finally, we discuss existential challenges and propose effective strategies for future engineering.
基金Project supported by the National Natural Science Foundation of China(Grant No.12062009)the Gansu National Science of Foundation,China(Grant No.20JR5RA473)。
文摘When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.
基金supported by the National Natural Science Foundation of China(32172002,32070242)Shenzhen Science and Technology Program(KQTD2016113010482651)+1 种基金Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(RC201901-05,PT201901-19)the USDA Agricultural Research Service Research Participation Program of the Oak Ridge Institute for Science and Education(ORISE)(DE-AC05-06OR23100).
文摘Soybean(Glycine max L.)is a protein and oil crop grown worldwide.Its fitness may be reduced by deleterious mutations,whose identification and purging is desirable for crop breeding.In the published whole-genome re-sequenced data of 2214 soybean accessions,including 221 wild soybean,1132 landrace cultivars and 861 improved soybean lines,we identified 115,275 deleterious single-nucleotide polymorphisms(SNPs).Numbers of deleterious alleles increased from wild soybeans to landraces and decreased from landraces to modern improved lines.Genes in selective-sweep regions showed fewer deleterious mutations than the remaining genes.Deleterious mutations explained 4.3%-48%more phenotypic variation than randomly selected SNPs for resistance to soybean cyst nematode race 2(SCN2),soybean cyst nematode race 3(SCN3)and soybean mosaic virus race 3(SMV3).These findings illustrate how mutation load has shifted during soybean domestication,expansion and improvement and provide candidate sites for breeding out deleterious mutations in soybean by genome editing and/or conventional breeding focused on the selection of progeny with fewer deleterious alleles.
基金the National Key Research and Development Program of China(Grant No.2019YFB2203504)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the Natural Science Foundation of Anhui Province,China(Grant No.1908085QF274)。
文摘A four-stage cascaded variable optical attenuator(VOA)with a large attenuation range is presented.The VOA is based on a Mach–Zehnder interferometer(MZI)and fabricated in a silica-based planar lightwave circuit(PLC)platform.The thermo-optic effect is used to achieve intensity modulation.The measured maximum attenuation of the four-stage cascaded VOA is 88.38 d B.The chip is also tested in a quantum key distribution(QKD)system to generate signal and decoy states.The mean photon number after attenuation of the four-stage cascaded VOA is less than 0.1,which can meet the requirement of QKD.
基金the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 11861161004, and 12104447)the National Key R&D Program of China (Grant No. 2018YFA0306600)+5 种基金the Chinese Academy of Sciences (Grant Nos. XDC07000000, GJJSTD20200001,QYZDY-SSW-SLH004,Y201984, and YSBR-068)Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0303204 and 2021ZD0302200)the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)Hefei Comprehensive National Science CenterChina Postdoctoral Science Foundation (Grant No. 2020M671858)the Fundamental Research Funds for the Central Universities。
文摘We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.
文摘In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list.
文摘<strong>Objective:</strong> The purpose of this study was to explore the clinical efficacy and security of the treatment of popliteal cyst through radiofrequency thermocoagulation (RFT) under ultrasound guidance. <strong>Methods:</strong> The clinical data of 35 patients with popliteal cyst, who were treated by RFT under ultrasound guidance from June 2019 to June 2020, were retrospectively analyzed. The Visual Analogue Scores (VAS) and the size of cyst before and after treatment were recorded at the first month, the third month, the sixth month. After six months, the recovery rate of Rauschning and Lindgren classification (R-L classification) level 0, 0 - I were counted. All the complications of the patients were observed. <strong>Results:</strong> 32 patients were followed up for six months. The scores and cyst sizes of each patient before and after the treatment were on a normal distribution curve. There was no significant difference in VAS scores before and after the treatment (P > 0.05). However, there was a significant difference in cyst sizes before and after the treatment (P < 0.05). Moreover, there was no significant difference in VAS scores and cyst sizes in each period after treatment (P > 0.05). According to the R-L classification in 6 months after treatment: the recovery rate of class 0 was 62.5% and class 0 - I level was 87.5%. There were no serious complications in the process. <strong>Conclusion:</strong> Treatment of popliteal cyst through RFT under ultrasound guidance is a simple, easy, reliable method that is worthy of clinical promotion.