Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smal...At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification.展开更多
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti...Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is causing a high mortality rate due to the lack of efficient early prognosis markers and suitable therapeutic regimens.The prognostic role of genes responsible for t...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is causing a high mortality rate due to the lack of efficient early prognosis markers and suitable therapeutic regimens.The prognostic role of genes responsible for the acquisition of radioresistance in ESCC has not been fully elucidated.AIM To establish a prognostic model by studying gene expression patterns pertinent to radioresistance in ESCC patients.METHODS Datasets were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases.The edgeR,a Bioconductor package,was used to analyze mRNA expression between different groups.We screened genes specifically responsible for radioresistance to estimate overall survival.Pearson correlation analysis was performed to confirm whether the expression of those genes correlated with each other.Genes contributing to radioresistance and overall survival were assessed by the multivariate Cox regression model through the calculation ofβi and risk score using the following formula:∑^(n)_(i=1)βi×PSI.RESULTS We identified three prognostic mRNAs(cathepsin S[CTSS],cluster of differentiation 180[CD180],and SLP adapter and CSK-interacting membrane protein[SCIMP])indicative of radioresistance.The expression of the three identified mRNAs was related to each other(r>0.70 and P<0.05).As to 1-year and 3-year overall survival prediction,the area under the time-dependent receiver operating characteristic curve of the signature consisting of the three mRNAs was 0.716 and 0.841,respectively.When stratifying patients based on the risk score derived from the signature,the high-risk group exhibited a higher death risk and shorter survival time than the low-risk group(P<0.0001).Overall survival of the low-risk patients was significantly better than that of the highrisk patients(P=0.018).CONCLUSION We have developed a novel three-gene prognostic signature consisting of CTSS,CD180,and SCIMO for ESCC,which may facilitate the prediction of early prognosis of this malignancy.展开更多
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic per...Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.展开更多
Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,...Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,lowpower consumption,environmentally friendly devices.Bismuth ferrite(BiFeO3,BFO)exhibits both(anti)ferromagnetic and ferroelectric properties at room temperature.Thus,it has played an increasingly important role in multiferroic system.In this review,we systematically discussed the developments of BFO nanomaterials including morphology,structures,properties,and potential applications in multiferroic devices with novel functions.Even the opportunities and challenges were all analyzed and summarized.We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future.展开更多
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Phila?delphia chromosome(Ph) and is a hallmark of chronic myeloid leukemia(CML).In leukemia cells,Ph not only...The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Phila?delphia chromosome(Ph) and is a hallmark of chronic myeloid leukemia(CML).In leukemia cells,Ph not only impairs the physiological signaling pathways but also disrupts genomic stability.This aberrant fusion gene encodes the breakpoint cluster region?proto?oncogene tyrosine?protein kinase(BCR?ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity.The kinase activity is responsible for maintaining proliferation,inhibiting differentia?tion,and conferring resistance to cell death.During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase,the expression patterns of different BCR?ABL1 transcripts vary.Each BCR?ABL1 transcript is present in a distinct leukemia phenotype,which predicts both response to therapy and clinical outcome.Besides CML,the Ph is found in acute lymphoblastic leukemia,acute myeloid leukemia,and mixed?phenotype acute leukemia.Here,we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph?positive leukemia and highlight key findings regarding leukemogenesis.展开更多
The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple fu...The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on.展开更多
Piezoelectric materials have been analyzed for over 100 years,due to their ability to convert mechanical vibrations into electric charge or electric fields into a mechanical strain for sensor,energy harvesting,and act...Piezoelectric materials have been analyzed for over 100 years,due to their ability to convert mechanical vibrations into electric charge or electric fields into a mechanical strain for sensor,energy harvesting,and actuator applications.A more recent development is the coupling of piezoelectricity and electro-chemistry,termed piezo-electro-chemistry,whereby the piezoelectrically induced electric charge or voltage under a mechanical stress can influence electro-chemical reactions.There is growing interest in such coupled systems,with a corresponding growth in the number of associated publications and patents.This review focuses on recent development of the piezo-electro-chemical coupling multiple systems based on various piezoelectric materials.It provides an overview of the basic characteristics of piezoelectric materials and comparison of operating conditions and their overall electro-chemical performance.The reported piezo-electro-chemical mechanisms are examined in detail.Comparisons are made between the ranges of material morphologies employed,and typical operating conditions are discussed.In addition,potential future directions and applications for the development of piezo-electro-chemical hybrid systems are described.This review provides a comprehensive overview of recent studies on how piezoelectric materials and devices have been applied to control electro-chemical processes,with an aim to inspire and direct future efforts in this emerging research field.展开更多
Conductive polymers as one of the candidate materials with pseudocapacitor behavior have inspired wide attentions,because of their high conductivity,fexibility,low cost and excellent processability.However,the intrins...Conductive polymers as one of the candidate materials with pseudocapacitor behavior have inspired wide attentions,because of their high conductivity,fexibility,low cost and excellent processability.However,the intrinsically poor cycling stability induced by the volume change over the doping/dedoping redox process limits their practical applications.Herein,we report the exploration of electrodes with robust cycling capacity for supercapacitors(SCs),which are rationally designed by coating conductive poly(3,4-ethylenedioxythiophene)(PEDOT)around free-standing SiC nanowires using an all-dry oxidative chemical vaper deposition(oCVD)method.The as-constructed SiC@PEDOT nanowire architecture enables a specific capacitance of 26.53 m F/cm^(2)at 0.2 m A/cm^(2),which is~370%to that of SiC nanowire counterpart(7.04 m F/cm^(2)).Moreover,their aqueous-based SCs exhibit robust cycling stability with104%capacity retention after 10000 cycles,which is among the highest values achieved for PEDOTbased SCs.展开更多
The development of a nation is deeply related to its energy consumption.2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for in...The development of a nation is deeply related to its energy consumption.2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications,such as self-powered sensor devices,environmental monitoring,and large-scale power generation.Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources.In this review,the variety of techniques for scavenging energies from sustainable sources such as solar,air,waste heat,and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials.In addition,practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.展开更多
One significant challenge for electronic devices is that the energy storage devices are unable to provide su cient energy for continuous and long-time operation,leading to frequent recharging or inconvenient battery r...One significant challenge for electronic devices is that the energy storage devices are unable to provide su cient energy for continuous and long-time operation,leading to frequent recharging or inconvenient battery replacement.To satisfy the needs of next-generation electronic devices for sustainable working,conspicuous progress has been achieved regarding the development for nanogenerator-based self-charging energy storage devices.Herein,the development of the self-charging energy storage devices is summarized.Focus will be on preparation of nanomaterials for Li-ion batteries and supercapacitors,structural design of the nanogenerator-based self-charging energy storage devices,performance testing,and potential applications.Moreover,the challenges and perspectives regarding self-charging energy storage devices are also discussed.展开更多
In higher plants, sugars (mainly sucrose) are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and devel- opment. Sucrose...In higher plants, sugars (mainly sucrose) are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and devel- opment. Sucrose transporters, or sucrose carriers (SUCs), play an important role in the long-distance transportation of sucrose from source organs to sink organs, thereby affecting crop yield and quality. The identification, characterization, and molecular function analysis of sucrose transporter genes have been reported for monocot and dicot plants. However, no relevant study has been reported on sucrose transporter genes in Brassica rapa vat. rapa, a cruciferous root crop used mainly as vegetables and fodder. We identified and cloned 12 sucrose transporter genes from turnips, named BrrSUC1.1 to BrrSUCB.2 according to the SUC gene sequences of B. rapa pekinensis. We constructed a phylogenetic tree and analyzed conserved motifs for all 12 sucrose transporter genes identified. Real-time quantitative poly- merase chain reaction was conducted to understand the expression levels of SUC genes in different tissues and developmental phases of the turnip. These findings add to our understanding of the genetics and physiology of sugar transport during taproot formation in turnips.展开更多
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric fil...Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.展开更多
BACKGROUND Although transcatheter aortic valve implantation(TAVI)is a safe and effective treatment for aortic stenosis,it still carries some risks,such as valve leaks,stroke,and even death.The left ventricular global ...BACKGROUND Although transcatheter aortic valve implantation(TAVI)is a safe and effective treatment for aortic stenosis,it still carries some risks,such as valve leaks,stroke,and even death.The left ventricular global longitudinal strain(LVGLS)measurement may be useful for the prediction of adverse events during this operation.AIM To explore the change of LVGLS during TAVI procedure and the relationship between LVGLS and perioperative adverse events.METHODS In this study,61 patients who had undergone percutaneous transfemoral TAVI were evaluated by transthoracic echocardiography.Before surgery,data on left ventricular ejection fraction(LVEF)and LVGLS were collected separately following balloon expansion and stent implantation.Difference in values of LVGLS and LVEF during preoperative balloon expansion(pre-ex),preoperative stent implantation(pre-im)and balloon expansion-stent implantation(ex-im)were also examined.Adverse events were defined as perioperative death,cardiac rupture,heart arrest,moderate or severe perivalvular leakage,significant mitral regurgitation during TAVI,perioperative moderate or severe mitral regurgitation,perioperative left ventricular outflow tract obstruction,reoperation,and acute heart failure.RESULTS The occurrence of perioperative adverse events was associated with differences in pre-ex LVGLS,but not with difference in pre-ex LVEF.There were significant differences between pre-LVGLS and ex-LVGLS,and between pre-LVGLS and im-LVGLS(P=0.037 and P=0.020,respectively).However,differences in LVEF were not significant(P=0.358,P=0.254);however differences in pre-ex LVGLS were associated with pre-LVGLS(P=0.045).Compared to LVEF,LVGLS is more sensitive as a measure of left heart function during TAVI and the perioperative period.Moreover,the differences in LVGLS were associated with the occurrence of perioperative adverse events,and changes in LVGLS were apparent in patients with undesirable LVGLS before the surgery.Furthermore,LVGLS is useful to predict changes in cardiac function during TAVI.CONCLUSION Greater attention should be paid to the patients who plan to undergo TAVI with normal LVEF but poor LVGLS.展开更多
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金supported by the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2).
文摘At present,the research on ferroelectric photovoltaic materials mainly focuses on photoelectric detection.In the context of the rapid development of the Internet of Things(IoT),it is particularly important to use smaller thin-film devices as sensors.In this work,an indium tin oxide/bismuth ferrite(BFO)/lanthanum nickelate device has been fabricated on an F-doped tin oxide glass substrate using the sol–gel method.The sensor can continuously output photoelectric signals with little environmental impact.Compared to other types of sensors,this photoelectric sensor has an ultra-low response time of 1.25 ms and ultra-high sensitivity.Furthermore,a material recognition system based on a BFO sensor is developed.It can effectively identify eight kinds of materials that are difficult for human eyes to distinguish.This provides new ideas and methods for developing the IoT in material identification.
基金supported by the National Natural Science Foundation of China (Grant No.52178515)。
文摘Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering.
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is causing a high mortality rate due to the lack of efficient early prognosis markers and suitable therapeutic regimens.The prognostic role of genes responsible for the acquisition of radioresistance in ESCC has not been fully elucidated.AIM To establish a prognostic model by studying gene expression patterns pertinent to radioresistance in ESCC patients.METHODS Datasets were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases.The edgeR,a Bioconductor package,was used to analyze mRNA expression between different groups.We screened genes specifically responsible for radioresistance to estimate overall survival.Pearson correlation analysis was performed to confirm whether the expression of those genes correlated with each other.Genes contributing to radioresistance and overall survival were assessed by the multivariate Cox regression model through the calculation ofβi and risk score using the following formula:∑^(n)_(i=1)βi×PSI.RESULTS We identified three prognostic mRNAs(cathepsin S[CTSS],cluster of differentiation 180[CD180],and SLP adapter and CSK-interacting membrane protein[SCIMP])indicative of radioresistance.The expression of the three identified mRNAs was related to each other(r>0.70 and P<0.05).As to 1-year and 3-year overall survival prediction,the area under the time-dependent receiver operating characteristic curve of the signature consisting of the three mRNAs was 0.716 and 0.841,respectively.When stratifying patients based on the risk score derived from the signature,the high-risk group exhibited a higher death risk and shorter survival time than the low-risk group(P<0.0001).Overall survival of the low-risk patients was significantly better than that of the highrisk patients(P=0.018).CONCLUSION We have developed a novel three-gene prognostic signature consisting of CTSS,CD180,and SCIMO for ESCC,which may facilitate the prediction of early prognosis of this malignancy.
基金supported by the National Key R&D Project from Minister of Science and Technology in China(No.2016YFA0202701,No.2018YFB2200500)the National Natural Science Foundation of China(No.52072041,No.61604012,No.61974170)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)。
文摘Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
基金the National Key R&D Program of China(Grant No.2016YFA0202701)the National Natural Science Foundation of China(Grant Nos.51472055,51504133)+5 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(Grant No.121411KYS820150028)the 2015 Annual Beijing Talents Fund(Grant No.2015000021223ZK32)Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)2019 Project of Liaoning Education Department(2019LNJC20)the“thousands talents”program for the pioneer researcher and his innovation team,China.
文摘Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity,ferromagnetism,and ferroelasticity,which can promise a broad application in multifunctional,lowpower consumption,environmentally friendly devices.Bismuth ferrite(BiFeO3,BFO)exhibits both(anti)ferromagnetic and ferroelectric properties at room temperature.Thus,it has played an increasingly important role in multiferroic system.In this review,we systematically discussed the developments of BFO nanomaterials including morphology,structures,properties,and potential applications in multiferroic devices with novel functions.Even the opportunities and challenges were all analyzed and summarized.We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future.
基金supported by the China Central Budget Recruitment Program of High?Level Overseas Talent (GDW 201221022066 to Q.Liu)the National Basic Research Program of China (973 Program:No.2012CB967000 to Q.Liu)+2 种基金the National Natural Science Foundation of China (NNSF No.81130040 to Q.Liu and No.81201686 to J.Xu)the Program for Changjiang Scholars and Innovative Research Team in Universities (ITR 13049 to Q.Liu)the Liaoning (NSF 2014029102 to Q.Liu)
文摘The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Phila?delphia chromosome(Ph) and is a hallmark of chronic myeloid leukemia(CML).In leukemia cells,Ph not only impairs the physiological signaling pathways but also disrupts genomic stability.This aberrant fusion gene encodes the breakpoint cluster region?proto?oncogene tyrosine?protein kinase(BCR?ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity.The kinase activity is responsible for maintaining proliferation,inhibiting differentia?tion,and conferring resistance to cell death.During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase,the expression patterns of different BCR?ABL1 transcripts vary.Each BCR?ABL1 transcript is present in a distinct leukemia phenotype,which predicts both response to therapy and clinical outcome.Besides CML,the Ph is found in acute lymphoblastic leukemia,acute myeloid leukemia,and mixed?phenotype acute leukemia.Here,we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph?positive leukemia and highlight key findings regarding leukemogenesis.
基金supported by the National Key R&D Program of China(No.2016YFA0202701)the National Natural Science Foundation of China(Nos.51472055 and 61404034)+3 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(No.121411KYS820150028)the 2015 Annual Beijing Talents Fund(No.2015000021223ZK32)the University of Chinese Academy of Sciences(No.Y8540XX2D2)the“thousands talents”program for the pioneer researcher and his innovation team,China.
文摘The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on.
基金supported by the National Key R&D Project from Minister of Science and Technology in China (No. 2016YFA0202701)the National Natural Science Foundation of China (No. 51472055)+4 种基金External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121411KYS820150028)the 2015 Annual Beijing Talents Fund (No. 2015000021223ZK32)Qingdao National Laboratory for Marine Science and Technology (No. 2017ASKJ01)the University of Chinese Academy of Sciences (Grant No. Y8540XX2D2)the ‘thousands talents’ program for the pioneer researcher and his innovation team, China。
文摘Piezoelectric materials have been analyzed for over 100 years,due to their ability to convert mechanical vibrations into electric charge or electric fields into a mechanical strain for sensor,energy harvesting,and actuator applications.A more recent development is the coupling of piezoelectricity and electro-chemistry,termed piezo-electro-chemistry,whereby the piezoelectrically induced electric charge or voltage under a mechanical stress can influence electro-chemical reactions.There is growing interest in such coupled systems,with a corresponding growth in the number of associated publications and patents.This review focuses on recent development of the piezo-electro-chemical coupling multiple systems based on various piezoelectric materials.It provides an overview of the basic characteristics of piezoelectric materials and comparison of operating conditions and their overall electro-chemical performance.The reported piezo-electro-chemical mechanisms are examined in detail.Comparisons are made between the ranges of material morphologies employed,and typical operating conditions are discussed.In addition,potential future directions and applications for the development of piezo-electro-chemical hybrid systems are described.This review provides a comprehensive overview of recent studies on how piezoelectric materials and devices have been applied to control electro-chemical processes,with an aim to inspire and direct future efforts in this emerging research field.
基金supported by the National Natural Science Foundation of China(NSFC,51972178 and 52072041)the Natural Science Foundation of Zhejiang Province(ZJNSF,LY20E030003)+2 种基金the Science and Technology Project of Jiangsu Province(BE2020111)the National Key R&D Project from Minister of Science and Technology in China(2016YFA0202701)the University of Chinese Academy of Sciences(Y8540XX2D2)。
文摘Conductive polymers as one of the candidate materials with pseudocapacitor behavior have inspired wide attentions,because of their high conductivity,fexibility,low cost and excellent processability.However,the intrinsically poor cycling stability induced by the volume change over the doping/dedoping redox process limits their practical applications.Herein,we report the exploration of electrodes with robust cycling capacity for supercapacitors(SCs),which are rationally designed by coating conductive poly(3,4-ethylenedioxythiophene)(PEDOT)around free-standing SiC nanowires using an all-dry oxidative chemical vaper deposition(oCVD)method.The as-constructed SiC@PEDOT nanowire architecture enables a specific capacitance of 26.53 m F/cm^(2)at 0.2 m A/cm^(2),which is~370%to that of SiC nanowire counterpart(7.04 m F/cm^(2)).Moreover,their aqueous-based SCs exhibit robust cycling stability with104%capacity retention after 10000 cycles,which is among the highest values achieved for PEDOTbased SCs.
基金This work was supported by the National Key R&D Project from Minister of Science and Technology in China(No.2016YFA0202701)the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)+3 种基金the National Natural Science Foundation of China(No.52072041)External Cooperation Program of BIC,Chinese Academy of Sciences(No.121411KYS820150028)the Chinese Government Scholarship,the 2015 Annual Beijing Talents Fund(No.2015000021223ZK32)Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01).
文摘The development of a nation is deeply related to its energy consumption.2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications,such as self-powered sensor devices,environmental monitoring,and large-scale power generation.Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources.In this review,the variety of techniques for scavenging energies from sustainable sources such as solar,air,waste heat,and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials.In addition,practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.
基金the support from the National Key R&D Program of China(No.2016YFA0202701)the National Natural Science Foundation of China(No.51472055)+7 种基金External Cooperation Program of BIC,Chinese Academy of Sciences(No.121411KYS820150028)the 2015 Annual Beijing Talents Fund(No.2015000021223ZK32)the University of Chinese Academy of Sciences(No.Y8540XX2D2)Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)the Shenzhen Peacock Plan(No.KQTD2015071616442225)the National Natural Science Foundation of China(No.51504133)the Natural Science Foundation of Liaoning Province(No.20170540465)the “thousands talents” program for the pioneer researcher and his innovation team,China
文摘One significant challenge for electronic devices is that the energy storage devices are unable to provide su cient energy for continuous and long-time operation,leading to frequent recharging or inconvenient battery replacement.To satisfy the needs of next-generation electronic devices for sustainable working,conspicuous progress has been achieved regarding the development for nanogenerator-based self-charging energy storage devices.Herein,the development of the self-charging energy storage devices is summarized.Focus will be on preparation of nanomaterials for Li-ion batteries and supercapacitors,structural design of the nanogenerator-based self-charging energy storage devices,performance testing,and potential applications.Moreover,the challenges and perspectives regarding self-charging energy storage devices are also discussed.
基金supported by Major Program of National Natural Science Foundation of China (31590820,31590823)
文摘In higher plants, sugars (mainly sucrose) are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and devel- opment. Sucrose transporters, or sucrose carriers (SUCs), play an important role in the long-distance transportation of sucrose from source organs to sink organs, thereby affecting crop yield and quality. The identification, characterization, and molecular function analysis of sucrose transporter genes have been reported for monocot and dicot plants. However, no relevant study has been reported on sucrose transporter genes in Brassica rapa vat. rapa, a cruciferous root crop used mainly as vegetables and fodder. We identified and cloned 12 sucrose transporter genes from turnips, named BrrSUC1.1 to BrrSUCB.2 according to the SUC gene sequences of B. rapa pekinensis. We constructed a phylogenetic tree and analyzed conserved motifs for all 12 sucrose transporter genes identified. Real-time quantitative poly- merase chain reaction was conducted to understand the expression levels of SUC genes in different tissues and developmental phases of the turnip. These findings add to our understanding of the genetics and physiology of sugar transport during taproot formation in turnips.
基金This work was supported by the National Natural Science Foundation of China(No.52072041)the Beijing Natural Science Foundation(No.JQ21007)the University of Chinese Academy of Sciences(No.Y8540XX2D2).
文摘Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light,mechanical and thermal energy and achieve a stable direct current output.Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage,while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics.Here,we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO_(3) ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies.This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3%energy enhancement to achieve a multi-dimensional"1+1>2"coupling enhancement in terms of current,charge and energy.This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.
文摘BACKGROUND Although transcatheter aortic valve implantation(TAVI)is a safe and effective treatment for aortic stenosis,it still carries some risks,such as valve leaks,stroke,and even death.The left ventricular global longitudinal strain(LVGLS)measurement may be useful for the prediction of adverse events during this operation.AIM To explore the change of LVGLS during TAVI procedure and the relationship between LVGLS and perioperative adverse events.METHODS In this study,61 patients who had undergone percutaneous transfemoral TAVI were evaluated by transthoracic echocardiography.Before surgery,data on left ventricular ejection fraction(LVEF)and LVGLS were collected separately following balloon expansion and stent implantation.Difference in values of LVGLS and LVEF during preoperative balloon expansion(pre-ex),preoperative stent implantation(pre-im)and balloon expansion-stent implantation(ex-im)were also examined.Adverse events were defined as perioperative death,cardiac rupture,heart arrest,moderate or severe perivalvular leakage,significant mitral regurgitation during TAVI,perioperative moderate or severe mitral regurgitation,perioperative left ventricular outflow tract obstruction,reoperation,and acute heart failure.RESULTS The occurrence of perioperative adverse events was associated with differences in pre-ex LVGLS,but not with difference in pre-ex LVEF.There were significant differences between pre-LVGLS and ex-LVGLS,and between pre-LVGLS and im-LVGLS(P=0.037 and P=0.020,respectively).However,differences in LVEF were not significant(P=0.358,P=0.254);however differences in pre-ex LVGLS were associated with pre-LVGLS(P=0.045).Compared to LVEF,LVGLS is more sensitive as a measure of left heart function during TAVI and the perioperative period.Moreover,the differences in LVGLS were associated with the occurrence of perioperative adverse events,and changes in LVGLS were apparent in patients with undesirable LVGLS before the surgery.Furthermore,LVGLS is useful to predict changes in cardiac function during TAVI.CONCLUSION Greater attention should be paid to the patients who plan to undergo TAVI with normal LVEF but poor LVGLS.