期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In-situ electrochemical study on the eff ects of Fe(Ⅲ)on kinetics of pyrite acidic pressure oxidation
1
作者 Yu Zhang Can Cui +7 位作者 Sen Lin Heping Li Lian Yang yadian xie Hailiang Hu Lingyun Zhou Huanjiang Wang Chunyan Li 《Acta Geochimica》 EI CAS CSCD 2024年第4期814-825,共12页
Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electr... Fe(Ⅲ)has been proved to be a more eff ective oxidant than dissolved oxygen at ambient temperature,however,the role of Fe(Ⅲ)in pyrite acidic pressure oxidation was rarely discussed so far.In this paper,in-situ electrochemical investigation was performed using a flow-through autoclave system in acidic pressure oxidation environment.The results illustrated that increasing Fe(Ⅲ)concentrations led to raising in redox potential of the solution,and decreased passivation of pyrite caused by deposition of elemental sulfur.Reduction of Fe(Ⅲ)at pyrite surface was a fast reaction with low activation energy,it was only slightly promoted by rising temperatures.While,the oxidation rate of pyrite at all investigated Fe(Ⅲ)concentrations increased obviously with rising temperatures,the anodic reaction was the rate-limiting step in the overall reaction.Activation energy of pyrite oxidation decreased from 47.74 to 28.79 kJ/mol when Fe(Ⅲ)concentration was increased from 0.05 to 0.50 g/L,showing that the reaction kinetics were limited by the rate of electrochemical reaction at low Fe(Ⅲ)concentrations,while,it gradually turned to be diffusion control with increasing Fe(Ⅲ)concentrations. 展开更多
关键词 PYRITE Pressure oxidation Fe(Ⅲ) In-situ electrochemistry Hydrothermal experiment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部