Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese...Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.展开更多
To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation ...To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation conditions during the drying process and the moisture adsorption characteristics of the SPI-CS films under different humidity conditions were investigated.Within the range of experimental conditions,the moisture migration rule in the SPI-CS films during the drying preparation was combined with the Page model which was expressed as MR=exp(-kt^(n)).It was found that the adsorption equilibrium needed shorter time(about 3 h)when the SPI-CS films existed in the environment with lower humidity(RH<54%).Additionally,the secondorder adsorption kinetic equation was successful to describe the moisture adsorption characteristic of the SPICS films during storage under different humidity conditions.展开更多
Recent studies have shown that age-related aging evolution is accompanied by imbalances in intestinal homeostasis.Marine red yeast(MRY)is a functional probiotic that has been shown to have antioxidant,immune and other...Recent studies have shown that age-related aging evolution is accompanied by imbalances in intestinal homeostasis.Marine red yeast(MRY)is a functional probiotic that has been shown to have antioxidant,immune and other properties.Therefore,we chose 900 healthy Hy-Line Brown hens at 433 d old as the research subjects and evaluated the correlation between intestinal health,laying performance,and egg quality in aged hens through the supplementation of MRY.These laying hens were assigned into 5 groups and received diet supplementation with 0%,0.5%,1.0%,1.5%,and 2%MRY for 12 weeks.The results showed that MRY supplementation increased egg production rate,average egg weight,and egg quality,and decreased feed conversion ratio and daily feed intake(P<0.05).The MRY supplement improved antioxidant indicators such as superoxide dismutase(SOD),catalase(CAT),glutathione peroxidase(GSH-Px),stimulated villus height,and increased the villus height to crypt depth ratio(V/C ratio)in the intestine(P<0.05).It also regulated the expression of intestinal inflammatory factors(transforming growth factor-β[TGF-β],interleukin[IL]-1β,IL-8,tumor necrosis factor-α[TNF-α])while increasing serum immunoglobulin G(IgG)levels(P<0.05).Furthermore,MRY supplementation upregulated the mRNA expression of tight junction proteins(occludin and zonula occludens-1[ZO-1]),anti-apoptotic gene(Bcl-2),and autophagy-related proteins(beclin-1 and light chain 3I[LC3I])in the intestine(P<0.05).The MRY supplement also led to an increase in the concentration of short-chain fatty acids in the cecum,and the relative abundance of the phylum Bacteroidetes,and genera Bacteroides and Rikenellaceae_RC9_gut_group.The LEfSe analysis revealed an enrichment of Sutterella and Akkermansia muciniphila.In conclusion,the results of this experiment indicated that the additional supplementation of MRY can improve the production performance of laying hens and may contribute to the restoration and balance of intestinal homeostasis,which supports the application potential of MRY as a green and efficient feed additive for improving the laying performance in chickens.展开更多
Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices.With the unique features of good electronic conductivity,structure flexibility,...Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices.With the unique features of good electronic conductivity,structure flexibility,and desirable physicochemical property,carbon-based nanomaterials have attracted enormous research attention as efficient electrode materials.Electronic and microstructure engineering of carbon-based nanomaterials are the keys to regulate the electrocatalytic properties for the specific redox reactions of advanced metal-based batteries.However,the critical roles of carbon-based electrocatalysts for rechargeable metal batteries have not been comprehensively discussed.With the basic introduction on the electronic and microstructure engineering strategies,we summarize the recent advances on the rational design of carbon-based electrocatalysts for the important redox reactions in various metal-air batteries and metal-halogen batteries.The relationships between the composition,structure,and the electrocatalytic properties of carbon-based materials were well-addressed to enhance the battery performance.The overview of present challenges and opportunities of the carbon-based active materials for future energy-related applications was also discussed.展开更多
Rechargeable aqueous zinc-iodine batteries have received extensive attention due to their inherent advantages such as low cost,flame retardancy and safety.To address the safety concern associated with Zn dendrites,tin...Rechargeable aqueous zinc-iodine batteries have received extensive attention due to their inherent advantages such as low cost,flame retardancy and safety.To address the safety concern associated with Zn dendrites,tin functional layer is introduced to the Zn surface via a spontaneous galvanic replacement reaction.This provides rapid deposition kinetics,thereby achieving the uniform Zn plating/stripping with a low overpotential(13.9 mV)and good stability for over 900 h.Importantly,the coupling of the advanced Zn anode with iodine in Zn-I_(2)battery exhibits a high specific capacity of 196.4 mAh·g^(−1)with high capacity retention(90.7%).This work provides a reliable strategy to regulate the reversible redox of zinc for advanced rechargeable batteries.展开更多
To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the fa...To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the facile electrospinning method and subsequent pyrolysis.The polyacrylonitrile precursor introduces the nitrogen doping under thermal treatment while the addition of iron acetylacetonate leads to the insitu formation of iron nitride among the carbon matrix.The crucial pyrolysis procedure is adjustable to determine the hierarchical porous structure and final composition of the novel carbon fiber composites.As the self-supporting electrode for loading iodine,the zinc-iodine battery exhibits a large specific capacity of 214 mAh/g and good cycling stability over 1600 h.In the combination of in-situ/ex-situ experimental measurements with the theoretical analysis,the in-depth understanding of intrinsic interaction between composited support and iodine species elucidates the essential mechanism to promote the redox kinetics of iodine via the anchoring effect and electrocatalytic conversion,thus improving cycling life and rate performance.Such fundamental principles on the basic redox conversion of iodine species would evoke the rational design of advanced iodine-based electrodes for improving battery performance.展开更多
基金supported by the Key Research Project of the Shennong Laboratory,Henan Province,China(SN012022-05)the National Natural Science Foundation of China(32272866)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Starting Foundation for Outstanding Young Scientists of Henan Agricultural University,China(30500664&30501280)。
文摘Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations. In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure. The breeds were divided into five conservation populations(GS1, 2010, ex-situ;GS2, 2019, ex-situ;GS3, 2019, in-situ;XB1, 2010, in-situ;and XB2, 2019, in-situ) based on conservation methods and generations. The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest. The degree of inbreeding of GS2 was higher than that of GS1 and GS3. Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2. In terms of population structure, the GS3 population were stratified relative to GS1 and GS2. According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar. We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs(in-situ and ex-situ). While XB1 and XB2 had similar levels of genetic diversity. Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.
基金the Grain,Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province,Henan University of Technology(G0202205)the Key Scientific Research Projects of Colleges and Universities of Henan(23A550012)the Science Foundation of Henan University of Technology(2020BS013)。
文摘To better understand the mass transfer process of moisture in the soy protein isolate-corn starch(SPI-CS)films during preparation and storage process,the drying kinetics model of SPI-CS films with different formation conditions during the drying process and the moisture adsorption characteristics of the SPI-CS films under different humidity conditions were investigated.Within the range of experimental conditions,the moisture migration rule in the SPI-CS films during the drying preparation was combined with the Page model which was expressed as MR=exp(-kt^(n)).It was found that the adsorption equilibrium needed shorter time(about 3 h)when the SPI-CS films existed in the environment with lower humidity(RH<54%).Additionally,the secondorder adsorption kinetic equation was successful to describe the moisture adsorption characteristic of the SPICS films during storage under different humidity conditions.
基金supported by the Science and Technology Research and Develo pment Program Joint Fund of Henan Province (232103810013)Major Scientific and Technological Special Project of Henan Province (221100110200)the China Agniculture Research Systems of Ministry of Finance and Ministry of Agriculture and Rural Affairs of China (CARS-40).
文摘Recent studies have shown that age-related aging evolution is accompanied by imbalances in intestinal homeostasis.Marine red yeast(MRY)is a functional probiotic that has been shown to have antioxidant,immune and other properties.Therefore,we chose 900 healthy Hy-Line Brown hens at 433 d old as the research subjects and evaluated the correlation between intestinal health,laying performance,and egg quality in aged hens through the supplementation of MRY.These laying hens were assigned into 5 groups and received diet supplementation with 0%,0.5%,1.0%,1.5%,and 2%MRY for 12 weeks.The results showed that MRY supplementation increased egg production rate,average egg weight,and egg quality,and decreased feed conversion ratio and daily feed intake(P<0.05).The MRY supplement improved antioxidant indicators such as superoxide dismutase(SOD),catalase(CAT),glutathione peroxidase(GSH-Px),stimulated villus height,and increased the villus height to crypt depth ratio(V/C ratio)in the intestine(P<0.05).It also regulated the expression of intestinal inflammatory factors(transforming growth factor-β[TGF-β],interleukin[IL]-1β,IL-8,tumor necrosis factor-α[TNF-α])while increasing serum immunoglobulin G(IgG)levels(P<0.05).Furthermore,MRY supplementation upregulated the mRNA expression of tight junction proteins(occludin and zonula occludens-1[ZO-1]),anti-apoptotic gene(Bcl-2),and autophagy-related proteins(beclin-1 and light chain 3I[LC3I])in the intestine(P<0.05).The MRY supplement also led to an increase in the concentration of short-chain fatty acids in the cecum,and the relative abundance of the phylum Bacteroidetes,and genera Bacteroides and Rikenellaceae_RC9_gut_group.The LEfSe analysis revealed an enrichment of Sutterella and Akkermansia muciniphila.In conclusion,the results of this experiment indicated that the additional supplementation of MRY can improve the production performance of laying hens and may contribute to the restoration and balance of intestinal homeostasis,which supports the application potential of MRY as a green and efficient feed additive for improving the laying performance in chickens.
基金the National Natural Scientific Foundation of China(No.22175108)the Natural Scientific Foundation of Shandong Province(No.ZR2020JQ09)the China Postdoctoral Science Foundation(No.2020M672054).
文摘Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices.With the unique features of good electronic conductivity,structure flexibility,and desirable physicochemical property,carbon-based nanomaterials have attracted enormous research attention as efficient electrode materials.Electronic and microstructure engineering of carbon-based nanomaterials are the keys to regulate the electrocatalytic properties for the specific redox reactions of advanced metal-based batteries.However,the critical roles of carbon-based electrocatalysts for rechargeable metal batteries have not been comprehensively discussed.With the basic introduction on the electronic and microstructure engineering strategies,we summarize the recent advances on the rational design of carbon-based electrocatalysts for the important redox reactions in various metal-air batteries and metal-halogen batteries.The relationships between the composition,structure,and the electrocatalytic properties of carbon-based materials were well-addressed to enhance the battery performance.The overview of present challenges and opportunities of the carbon-based active materials for future energy-related applications was also discussed.
基金supported by the National Natural Science Foundation of China(No.22175108)the Natural Scientific Foundation of Shandong Province(No.ZR2020JQ09)+1 种基金Taishan Scholars Program of Shandong Province(No.tsqn20161004)the Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(No.2019KJC025).
文摘Rechargeable aqueous zinc-iodine batteries have received extensive attention due to their inherent advantages such as low cost,flame retardancy and safety.To address the safety concern associated with Zn dendrites,tin functional layer is introduced to the Zn surface via a spontaneous galvanic replacement reaction.This provides rapid deposition kinetics,thereby achieving the uniform Zn plating/stripping with a low overpotential(13.9 mV)and good stability for over 900 h.Importantly,the coupling of the advanced Zn anode with iodine in Zn-I_(2)battery exhibits a high specific capacity of 196.4 mAh·g^(−1)with high capacity retention(90.7%).This work provides a reliable strategy to regulate the reversible redox of zinc for advanced rechargeable batteries.
基金financially supported by the National Natural Science Foundation of China(No.22175108)the Natural Scientific Foundation of Shandong Province(Nos.ZR2020JQ09 and ZR2022ZD27)Taishan Scholars Program of Shandong Province,Project for Scientific Research Innovation Team of Young Scholar in Colleges,Universities of Shandong Province(No.2019KJC025).
文摘To address the insulating nature and the shuttle effect of iodide species that would deteriorate the battery performance,herein iron nitride is well-dispersed into porous carbon fibers with good flexibility via the facile electrospinning method and subsequent pyrolysis.The polyacrylonitrile precursor introduces the nitrogen doping under thermal treatment while the addition of iron acetylacetonate leads to the insitu formation of iron nitride among the carbon matrix.The crucial pyrolysis procedure is adjustable to determine the hierarchical porous structure and final composition of the novel carbon fiber composites.As the self-supporting electrode for loading iodine,the zinc-iodine battery exhibits a large specific capacity of 214 mAh/g and good cycling stability over 1600 h.In the combination of in-situ/ex-situ experimental measurements with the theoretical analysis,the in-depth understanding of intrinsic interaction between composited support and iodine species elucidates the essential mechanism to promote the redox kinetics of iodine via the anchoring effect and electrocatalytic conversion,thus improving cycling life and rate performance.Such fundamental principles on the basic redox conversion of iodine species would evoke the rational design of advanced iodine-based electrodes for improving battery performance.