期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Methodology development and application of X-ray imaging beamline at SSRF 被引量:10
1
作者 Hong-Lan Xie Biao Deng +7 位作者 Guo-Hao Du Ya-Nan Fu Han Guo yan-ling xue Guan-Yun Peng Fen Tao Ling Zhang Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第10期74-94,共21页
This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the... This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the past 5 years.The photon energy range of the beamline is 8–72.5 keV.Several sets of X-ray imaging detectors with different pixel sizes(0.19–24 lm)are used to realize X-ray microcomputed tomography(X-ray micro-CT)and X-ray in-line phase-contrast imaging.To satisfy the requirements of user experiments,new X-ray imaging methods and image processing techniques are developed.In vivo dynamic micro-CT experiments with living insects are performed in 0.5 s(sampling rate of 2 Hz,2 tomograms/s)with a monochromatic beam from a wiggler source and in 40 ms(sampling rate of 25 Hz,25 tomograms/s)with a white beam from a bending magnet source.A new X-ray imaging method known as move contrast X-ray imaging is proposed,with which blood flow and moving tissues in raw images can be distinguished according to their moving frequencies in the time domain.Furthermore,X-ray speckle-tracking imaging with twice exposures to eliminate the edge enhancement effect is developed.A high-precision quantification method is realized to measure complex three-dimensional blood vessels obtained via X-ray micro-CT.X-ray imaging methods such as three-dimensional X-ray diffraction microscopy,small-angle X-ray scattering CT,and X-ray fluorescence CT are developed,in which the X-ray micro-CT imaging method is combined with other contrast mechanisms such as diffraction,scattering,and fluorescence contrasts respectively.Moreover,an X-ray nano-CT experiment is performed with a 100 nm spatial resolution.Typical user experimental results from the fields of material science,biomedicine,paleontology,physics,chemistry,and environmental science obtained on the beamline are provided. 展开更多
关键词 X-ray imaging X-ray in-line phase-contrast imaging X-ray micro-CT Dynamic micro-CT X-ray speckle-tracking imaging 3DXRD SAXS-CT X-ray fluorescence CT X-ray nano-CT Move contrast X-ray imaging
下载PDF
X-ray fluorescence microtomography based on polycapillary- focused X-rays from laboratory source 被引量:3
2
作者 Bing-Gang Feng Fen Tao +8 位作者 Yi-Ming Yang Tao Hu Fei-Xiang Wang Guo-Hao Du yan-ling xue Ya-Jun Tong Tian-Xi Sun Biao Deng Ti-Qiao Xiao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第6期85-91,共7页
X-ray fluorescence microtomography(μXFCT)is a nondestructive analytical technique and has been widely used to nondestructively detect and quantify the elemental composition and distributions in samples. Usually, sync... X-ray fluorescence microtomography(μXFCT)is a nondestructive analytical technique and has been widely used to nondestructively detect and quantify the elemental composition and distributions in samples. Usually, synchrotron radiation X-rays are used for μXFCT, due to its high flux density. In this paper, a laboratory-sourcebased μXFCT system was developed, in which a polycapillary lens is employed to focus the X-ray beam and improve the flux density. The maximum likelihood expectation maximization algorithm was used to reconstruct the computed tomography slices at a limited number of projections. The experimental results demonstrated that the developed system could reveal the elemental distribution inside the test sample, with an elemental sensitivity of 1000 ppm. 展开更多
关键词 检查 荧光 实验室 期望最大化算法 采购 非破坏性 同步加速器 断层摄影术
下载PDF
Multi-modality measurement and comprehensive analysis of hepatocellular carcinoma using synchrotron-based microscopy and spectroscopy 被引量:1
3
作者 Gong-Xiang Wei Sui-Xia Zhang +4 位作者 Zhao Li Fu-Li Wang yan-ling xue Te Ji Hui-Qiang Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第9期136-149,共14页
The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and... The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and data processing techniques.In this study,a general trans-scale and multi-modality measurement method was developed for the quantitative diagnosis of hepatocellular carcinoma(HCC)using a combination of propagation-based phase-contrast computed tomography(PPCT),scanning transmission soft X-ray microscopy(STXM),and Fourier transform infrared micro-spectroscopy(FTIR).Our experimental results reveal the trans-scale micro-morpho-logical HCC pathology and facilitate quantitative data analysis and comprehensive assessment.These results include some visualization features of PPCT-based tissue microenvironments,STXM-based cellular fine structures,and FTIR-based bio-macromolecular spectral characteris-tics during HCC tumor differentiation and proliferation.The proposed method provides multidimensional feature data support for constructing a high-accuracy machine learning algorithm based on a gray-level histogram,gray-gradient co-occurrence matrix,gray-level co-occurrence matrix,and back-propagation neural network model.Multi-dimensional information analysis and diagnosis revealed the morphological pathways of HCC pathological evolution and we explored the relationships between HCC-related feature changes in inflammatory microenviron-ments,cellular metabolism,and the stretching vibration peaks of biomolecules of lipids,proteins,and nucleic acids.Therefore,the proposed methodology has strong potential for the visualization of complex tumors and assessing the risks of tumor differentiation and metastasis. 展开更多
关键词 Propagation based phase contrast tomography Soft X-ray microscopy Infrared micro spectroscopy Machine learning Tumor microenvironment and metastasis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部