In order to study the influence of rubidium(Rb)addition on the phase composition,microstructure,mechanical properties and cell response of bioactive glass-ceramics,CaO−SiO2−Na2O−B2O3−MgO−ZnO−P2O5 glass system was desi...In order to study the influence of rubidium(Rb)addition on the phase composition,microstructure,mechanical properties and cell response of bioactive glass-ceramics,CaO−SiO2−Na2O−B2O3−MgO−ZnO−P2O5 glass system was designed with and without addition of Rb.The results show that hydroxyapatite(HA)and Mg−whitelockite(Ca18Mg2H2(PO4)14)crystalline phases are formed in the glass matrix without Rb.After the addition of Rb,only HA phase is detected.The grain size of the crystals in the glass-ceramics is larger with the addition of Rb than that of samples without Rb.Rb addition can improve the bending strength of glass-ceramics.The cultivation of human bone marrow mesenchymal stem cells(hBMSCs)on Rb-containing glass-ceramics demonstrates enhanced cell adhesion,proliferation and ALP activity.In conclusion,Rb-modified glass-ceramics exhibit good mechanical property,excellent bioactivity and biocompatibility,which have potential for bone regeneration application.展开更多
In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed b...In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed by hot-rolling, annealing, and quenching. The microstructure and mechanical properties were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), micro-region X-ray diffractometry(MRXRD), nanoindentation, and in-situ scanning electron microscopy tensile testing. The results show that the Ti-18 Nb consists of Ti-enriched, diffusion and Nb-enriched zones, and the sharp Nb gradient across different zones leads to inhomogeneous distribution of phase and mechanical properties. A remarkable finding is that the diffusion zones not only enable the cooperative deformation between the brittle Ti-enriched zones and the ductile Nb-enriched zones but also act as the crack-arresters to prevent the local cracks in the Ti-enriched zones from further propagating across the composite.展开更多
基金The authors are grateful for the financial supports from the Natural Science Foundation of Hunan Province,China(2019JJ50797)the Postdoctoral Science Foundation of China(2019T120711).
文摘In order to study the influence of rubidium(Rb)addition on the phase composition,microstructure,mechanical properties and cell response of bioactive glass-ceramics,CaO−SiO2−Na2O−B2O3−MgO−ZnO−P2O5 glass system was designed with and without addition of Rb.The results show that hydroxyapatite(HA)and Mg−whitelockite(Ca18Mg2H2(PO4)14)crystalline phases are formed in the glass matrix without Rb.After the addition of Rb,only HA phase is detected.The grain size of the crystals in the glass-ceramics is larger with the addition of Rb than that of samples without Rb.Rb addition can improve the bending strength of glass-ceramics.The cultivation of human bone marrow mesenchymal stem cells(hBMSCs)on Rb-containing glass-ceramics demonstrates enhanced cell adhesion,proliferation and ALP activity.In conclusion,Rb-modified glass-ceramics exhibit good mechanical property,excellent bioactivity and biocompatibility,which have potential for bone regeneration application.
基金Project(51625404)supported by the National Natural Science Foundation for Distinguished Young Scholar of ChinaProjects(51604104,51504295)supported by the National Natural Science Foundation of China
文摘In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed by hot-rolling, annealing, and quenching. The microstructure and mechanical properties were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), micro-region X-ray diffractometry(MRXRD), nanoindentation, and in-situ scanning electron microscopy tensile testing. The results show that the Ti-18 Nb consists of Ti-enriched, diffusion and Nb-enriched zones, and the sharp Nb gradient across different zones leads to inhomogeneous distribution of phase and mechanical properties. A remarkable finding is that the diffusion zones not only enable the cooperative deformation between the brittle Ti-enriched zones and the ductile Nb-enriched zones but also act as the crack-arresters to prevent the local cracks in the Ti-enriched zones from further propagating across the composite.