Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu...Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.展开更多
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom...High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.展开更多
Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical i...Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical implementation of Li-S batteries.Here,heterostructured Fe_(3)C-FeN nanoparticles dotted in the threedimensional-ordered nitrogen-doped carbon framework(Fe_(3)C-FeN@NCF) were synthesized by molecular engineering combined with heterointerface engineering,and were applied to regulate the immobilization-diffusion-conversion behavior of polar polysulfides.It is experimentally and theoretically demonstrated that the heterointerface between Fe_(3)C and FeN exhibits high sulfiphilicity and high electronic/ionic conductivity,thus effectively capturing polysulfides and accelerating the bidirectional conversion of sulfur species.Meanwhile,the holey carbon framework functions as the scaffold to highly disperse binary nanoparticles,ensuring the sufficient exposure of active sites and the easy accessibility for lithium ions and electrons.By virtue of these synergistic merits,the Li-S batteries based on Fe_(3)CFeN@NCF-modified separators afford excellent electrochemical performances including a high rate capacity of 858 mA h g^(-1)at 2 C and a low capacity decay rate of 0.07% per cycle after 800 cycles at 1C This work provides inspiration for the design of heterostructured compounds and sheds light on the potential of heterostructure in high-efficiency Li-S batteries.展开更多
With the emergence of some solid electrolytes(SSEs)with high ionic conductivity being comparable to liquid electrolytes,solid-state lithium-sulfur batteries(SSLSBs)have been widely regarded as one of the most promisin...With the emergence of some solid electrolytes(SSEs)with high ionic conductivity being comparable to liquid electrolytes,solid-state lithium-sulfur batteries(SSLSBs)have been widely regarded as one of the most promising candidates for the next generation of power generation energy storage batteries,and have been extensively researched.Though many fundamental and technological issues still need to be resolved to develop commercially viable technologies,SSLSBs using SSEs are expected to address the present limitations and achieve high energy and power density while improving safety,which is very attractive to large-scale energy storage systems.SSLSBs have been developed for many years.However,there are few systematic discussions related to the working mechanism of action of various electrolytes in SSLSBs and the defects and the corresponding solutions of various electrolytes.To fill this gap,it is very meaningful to review the recent progress of SSEs in SSLSBs.In this review,we comprehensively investigate and summarize the application of SSEs in LSBs to determine the differences which still exist between current progresses and real-world requirements,and comprehensively describe the mechanism of action of SSLSBs,including lithium-ion transport,interfacial contact,and catalytic conversion mechanisms.More importantly,the selection of solid electrolyte materials and the novel design of structures are reviewed and the properties of various SSEs are elucidated.Finally,the prospects and possible future research directions of SSLSBs including designing high electronic/ionic conductivity for cathodes,optimizing electrolytes and developing novel electrolytes with excellent properties,improving electrode/-electrolyte interface stability and enhancing interfacial dynamics between electrolyte and anode,using more advanced test equipment and characterization techniques to analyze conduction mechanism of Li^(+)in SSEs are presented.It is hoped that this review can arouse people’s attention and enlighten the development of functional materials and novel structures of SSEs in the next step.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is...Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is essential for the survival of sea cucumbers.Six MnSODs were identified from the transcriptomes of deep and shallow-sea sea cucumbers.To explore their environmental adaptation mechanism,we conducted environmental selection pressure analysis through the branching site model of PAML software.We obtained night positive selection sites,and two of them were significant(97F→H,134K→V):97F→H located in a highly conservative characteristic sequence,and its polarity c hange might have a great impact on the function of MnSOD;134K→V had a change in piezophilic a bility,which might help MnSOD adapt to the environment of high hydrostatic pressure in the deepsea.To further study the effect of these two positive selection sites on MnSOD,we predicted the point mutations of F97H and K134V on shallow-sea sea cucumber by using MAESTROweb and PyMOL.Results show that 97F→H,134K→V might improve MnSOD’s efficiency of scavenging superoxide a nion and its ability to resist high hydrostatic pressure by moderately reducing its stability.The above results indicated that MnSODs of deep-sea sea cucumber adapted to deep-sea environments through their amino acid changes in polarity,piezophilic behavior,and local stability.This study revealed the correlation between MnSOD and extreme environment,and will help improve our understanding of the organism’s adaptation mechanisms in deep sea.展开更多
The assessment of the spatiotemporal evolution of habitat quality caused by land use changes can provide a scientifc basis for the ecological protection and green development of mining cities.Taking Yanshan County as ...The assessment of the spatiotemporal evolution of habitat quality caused by land use changes can provide a scientifc basis for the ecological protection and green development of mining cities.Taking Yanshan County as an example of a typical mining city,this article discussed the spatial pattern and evolution characteristics of habitat quality in 2000 and 2018 based on the ArcGIS platform and the InVEST model.The conclusions are as below:from 2000 to 2018,the area of farmland and construction land changed the most in the study area.Among them,the area of farmland decreased by 3.48%,and the area of industrial and mining land and construction land increased by 53.25%.Areas of low,relatively low and high habitat quality expanded,and areas of medium and relatively high habitat quality shrank,which is closely related to the distribution of land use.The areas with high habitat degradation degrees appear around cities,mining areas and watersheds,while the areas with low habitat degradation degrees are mainly distributed in the southern woodland.The distribution of cold and hot spots in the habitat quality distribution of Yanshan County presents a pattern of“hot in the south and cold in the north”.The results are of great signifcance to the precise implementation of ecosystem management decisions in mining cities and the creation of a landscape pattern of“beautiful countrysides,green cities,and green mines”.展开更多
The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients.Programmable delivery of immunotherapy-involving combinations through a singl...The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients.Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising,yet greatly challenging,to reverse postoperative immunosuppression.Here,an injectable hierarchical gel matrix,composed of dual lipid gel(DLG)layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios,was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy.The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide(GO)nanoparticles.GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages(TAMs)and promote an immunogenic tumor microenvironment.The inner layer,loaded with anti-CD47 antibody(aCD47),could maintain the gel state for a much longer time,enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory proteinα(SIRPα)pathway for a long-term antitumor effect.In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape,thereby boosting the systemic immune responses.展开更多
The RAS-RAF-MEK-ERK signaling pathway(MAPK signaling pathway) plays a significant role in multiple pathological behaviors and is most frequently dysregulated in more than 30% of human cancers.As key elements in this p...The RAS-RAF-MEK-ERK signaling pathway(MAPK signaling pathway) plays a significant role in multiple pathological behaviors and is most frequently dysregulated in more than 30% of human cancers.As key elements in this pathway, MEK1/2 play crucial roles in tumorigenesis and the inhibition of apoptosis, which makes their inhibition an attractive antitumor strategy.Dozens of potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed that have produced substantial improvement in clinical outcomes over the past decade.However, the efficacy of these agents is limited, and response rates are variable in a wide range of tumors that harbor RAS and RAF mutations due to the development of resistance, which is derived mainly from the persistence of MAPK signaling and increased activation of the mutual feedback networks.Both intrinsic and acquired resistance to MEK inhibitors necessitates the synergistic targeting of both pathways to restore the therapeutic effects of a single agent.In this review, the significant role of the MAPK pathway in carcinogenesis and its therapeutic potential are comprehensively examined with a focus on MEK inhibitors.Then, the activation of feedback networks accompanying MEK inhibition is briefly reviewed.Combination strategies that involve the simultaneous inhibition of the original and resistance pathways are highlighted and elaborately described on the basis of the latest research progress.Finally, the obstacles to the development of MEK-related combination systems are discussed in order to lay the groundwork for their clinical application as frontline treatments for individual patients with MAPK-hyperactivated malignancies.展开更多
Exploring electrode materials with a high volumetric energy density and high rate capability remains of a great challenge for nanosized-Li_(4)Ti_(5)O_(12)(LTO)batteries.Here,hierarchical porous Ti^(3+)-C-N-Br co-doped...Exploring electrode materials with a high volumetric energy density and high rate capability remains of a great challenge for nanosized-Li_(4)Ti_(5)O_(12)(LTO)batteries.Here,hierarchical porous Ti^(3+)-C-N-Br co-doped LTO(LTOCPB-CC)is synthesized using carboxyl-grafted nanocarbon(CC)and cetylpyridinium bromide(CPB)as combined structure-directing agents.Ti^(4+)-O-CPB/Li^(+)-CC is designed as a new molecular chelate,in which CPB and CC promote the uniform mixing of Li^(+)and Ti^(4+)and control the morphology of TiO_(2) and the final product.The defects(oxygen vacancies and ion dopants)formed during the annealing process increase the electron/hole concentration and reduce the band gap,both of which enhance the n-type electron modification of LTO.As-prepared LTOCPB-CC has a large specific surface area and high tap density,as well as a high electronic conductivity(2.84×10^(-4) S cm^(-1))and ionic conductivity(3.82×10^(-12)cm^(2) s^(-1)),which are responsible for its excellent rate capability(157.7 mA h g^(-1) at 20 C)and stable long-term cycling performance(0.008% fade per cycle after 1000 cycles at 20 C).展开更多
The clinical data of 3 patients with rhabdomyolysis(RM)caused by different viral infections were retrospectively reviewed.The diagnoses were established according to the clinical symptoms,physical signs,myocardial enz...The clinical data of 3 patients with rhabdomyolysis(RM)caused by different viral infections were retrospectively reviewed.The diagnoses were established according to the clinical symptoms,physical signs,myocardial enzymes,and muscle biopsy.Case 1 was a 11-year-old boy with influenza A virus infection,whose major symptoms were fever,cough and myalgia.After the treatment of active anti-virus,hydration,and alkalinization,the patient completely recovered.Case 2 was a 10-year-old girl with Epstein-Barr(EB)virus infection who had significant musculoskeletal pain and muscle weakness symptoms with significantly elevated serum creatine kinase.After active hydration and anti-infective treatment,the patient s condition returned to normal.Case 3 was a 15-year・old boy with human cytomegalovirus infection,whose symptoms were mainly repeated fever,accompanied by myalgia and facial edema.Antibacterial therapy was ineffective,and the disease progressed with respiratory muscle weakness and multiple organ injuries.After antiviral treatment,respiratory support and hemofiltration,the symptoms relieved and patient recovered without sequela.With literature review,we believe that although influenza virus,Epstein-Barr virus and cytomegalovirus rarely cause RM in children,it should be attached attention to.With early diagnosis and treatment,the prognosis is favorable.展开更多
With the continuous growth of the population and the continuous reduction of cultivated land,China’s food security is greatly threatened.In addition,China’s coal mining has been mainly underground mining,causing lan...With the continuous growth of the population and the continuous reduction of cultivated land,China’s food security is greatly threatened.In addition,China’s coal mining has been mainly underground mining,causing land subsidence and damaging existing cultivated land.This efect intensifes the contradiction between the growth of the risk population and the reduction of cultivated land.The reclamation of mining subsidence land with Yellow River sediment is often used as an efective way to improve the recovery rate of cultivated land.Shortening the reclamation time and realizing continuous flling are signifcant issues.The work presented in this paper studied the sediment settlement rate and consolidation time by combining theory,feld flling and reclamation tests and numerical simulations.A feld flling test study was carried out in the lowlands of Jibeiwang Village,Qihe County,Shandong Province,China.By calculating the drainage consolidation time,the consolidation factor of 0.015656 m^(2)/d,and the time factor for sediment consolidation of 0.575 were determined.The sediment consolidation time for this test was 9.18 days.The calculation of sediment deposition rate and consolidation time is of great practical signifcance to guide the Yellow River sediment flling,realize continuous flling,and save reclamation time and cost.展开更多
Chlorophyll, one of the major chloroplast components for photosynthesis, has a positive relationship with the photosynthetic rate. The chlorophyll content is an important assessment parameter in agronomy and plant bio...Chlorophyll, one of the major chloroplast components for photosynthesis, has a positive relationship with the photosynthetic rate. The chlorophyll content is an important assessment parameter in agronomy and plant biology research. This study was conducted to evaluate the natural variation in the chlorophyll content and to determine the differential response of the chlorophyll concentration to dark treatment in a natural population containing 139 maize inbreds. A five-fold higher chlorophyll concentration was measured in the light compared with the dark. Meanwhile, the wide variation in the chlorophyll concentration showed the differential response of the natural maize population to dark. Finally, we identified some inbreds that were highly sensitive to the dark with more than 70% difference between the light and dark treatment, such as Dan598, Zheng29, Zheng35, DH29, and R08, as well as some inbreds that had lower sensitivity to the dark, with less than 35% difference in the chlorophyll content between the light and dark treatment, such as Chuan48-2, 4F1, 303WX, 9642, and LY042.展开更多
Porcine epidemic diarrhea,a highly contagious enteric infectious disease caused by the porcine epidemic diarrhea virus(PEDV)with symptoms of vomit,diarrhea,loss of appetite of suckling pig,has led to serious economic ...Porcine epidemic diarrhea,a highly contagious enteric infectious disease caused by the porcine epidemic diarrhea virus(PEDV)with symptoms of vomit,diarrhea,loss of appetite of suckling pig,has led to serious economic loss to the global swine industry.In this study,a real-time fluorescence reverse transcription loop-mediated isothermal amplification(RT-LAMP)assay was developed to detect PEDV RNA.The real-time fluorescence RT-LAMP assay was performed at62℃for 60 min,using a simple and portable device,the ESE-Quant Tube Scanner.The detection limit of RNA was 2.9×10^(6) copies/μl,10 times as sensitive as RT-PCR,and the detection was specific only to PEDV.Application of this method to clinical samples yielded a positivity rate of 93%,which was higher than that of RT-PCR.This technique saves time and is efficient,and is thus expected to be useful for the diagnosis of PEDV infection in the field.展开更多
The processability and ultimate quality of coffee(Coffea arabica)are determined by the composition of the matured fruits.The basis of genetic variation in coffee fruit quality could be explained by studying color form...The processability and ultimate quality of coffee(Coffea arabica)are determined by the composition of the matured fruits.The basis of genetic variation in coffee fruit quality could be explained by studying color formation during fruit maturation.Transcriptome profiling was conducted on matured fruits of four C.arabica varieties(orange colored fruits(ORF);purple colored fruits(PF);red colored fruits(RF)and yellow colored fruits(YF))to identify key color-regulating genes,biosynthesis pathways and transcription factors implicated in fruit color formation.A total of 39,938 genes were identified in the transcriptomes of the four C.arabica varieties.In all,2745,781 and 1224 differentially expressed genes(DEGs)were detected in YF_vs_PF,YF_vs_RF and YF_vs_ORF,respectively,with 1732 DEGs conserved among the three pairwise groups.Functional annotation of the DEGs led to the detection of 28 and 82 key genes involved in the biosynthesis of carotenoids and anthocyanins,respectively.Key transcription factors bHLH,MYB,NAC,MADS,and WRKY implicated in fruit color regulation were detected.The high expression levels of gene-LOC113688784(PSY),gene-LOC113730013(b-CHY),gene-LOC113728842(CCD7),gene-LOC113689681(NCED)and gene-LOC113729473(ABA2)in YF may have accounted for the yellow coloration.The differential expression of several anthocyanin and carotenoid-specific genes in the fruits substantially account for the purple(PF),red(RF),and orange(ORF)colorations.This study provides important insights into fruit color formation and variations in C.arabica and will help to develop coffee varieties with specific color and quality traits.展开更多
As one of the many traditional Chinese medicine journals in the Republic of China(ROC)era,the journal"Chinese Medicine Pillar Monthly"had been published for 11 consecutive years.It has rich content and cover...As one of the many traditional Chinese medicine journals in the Republic of China(ROC)era,the journal"Chinese Medicine Pillar Monthly"had been published for 11 consecutive years.It has rich content and covers a wide range of topics.It has important reference value for studying the direction of cultural development,political dynamics,and development trends of Chinese and Western medicine during the ROC era,and the journal was intended to spread the classics and clinical experience of traditional Chinese medicine,making it a medical treasure house.This paper mainly introduces the current status of the journal,the date of its inception,and its main content,features and contributions.展开更多
By summarizing the regulatory, technical requirements and problems of domestic non-special use cosmetics in China, reasonable suggestions were put forward for domestic non-special use cosmetics supervision. The proble...By summarizing the regulatory, technical requirements and problems of domestic non-special use cosmetics in China, reasonable suggestions were put forward for domestic non-special use cosmetics supervision. The problems encountered in the process of technical review were summarized from 5 aspects by studying on the record information from 2014: the regulatory requirements, record range, record information, label content, and the provincial review standards. The results showed that, due to the regulations issued early and the sectioned management, the domestic non-special use cosmetics was lack of authority and continuity supervision, existed problems such as the variety declaring was beyond the filling range, the information applied was incomplete, the sales package pictures uploaded were not suitable, and the review standards of different provinces were inconsistent. At last, some suggestions were proposed.展开更多
基金supported by the National Natural Science Foundation of China (52203066,51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’innovation and entrepreneurship training program (202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education (Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.
基金supported by the National Natural Science Foundation of China(Nos.21905041,22279014)Jilin Province Major Science and Technology special project(Nos.20220301004GX+4 种基金20220301005GX)R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(No.19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversitySpecial foundation of Jilin Province Industrial Technology Research and Development(No.2019C042)the Fundamental Research Funds for the Central Universities(No.2412020FZ008)
文摘High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.
基金supported by the National Natural Science Foundation of China(22005341 and 22138013)the Shandong Provincial Natural Science Foundation(ZR2020QB128 and ZR2020ZD08)+2 种基金the Taishan Scholar Project(ts201712020)the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010402)the Independent Innovation Research Project of China University of Petroleum(22CX06026A)。
文摘Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical implementation of Li-S batteries.Here,heterostructured Fe_(3)C-FeN nanoparticles dotted in the threedimensional-ordered nitrogen-doped carbon framework(Fe_(3)C-FeN@NCF) were synthesized by molecular engineering combined with heterointerface engineering,and were applied to regulate the immobilization-diffusion-conversion behavior of polar polysulfides.It is experimentally and theoretically demonstrated that the heterointerface between Fe_(3)C and FeN exhibits high sulfiphilicity and high electronic/ionic conductivity,thus effectively capturing polysulfides and accelerating the bidirectional conversion of sulfur species.Meanwhile,the holey carbon framework functions as the scaffold to highly disperse binary nanoparticles,ensuring the sufficient exposure of active sites and the easy accessibility for lithium ions and electrons.By virtue of these synergistic merits,the Li-S batteries based on Fe_(3)CFeN@NCF-modified separators afford excellent electrochemical performances including a high rate capacity of 858 mA h g^(-1)at 2 C and a low capacity decay rate of 0.07% per cycle after 800 cycles at 1C This work provides inspiration for the design of heterostructured compounds and sheds light on the potential of heterostructure in high-efficiency Li-S batteries.
基金supported by the National Natural Science Foundation of China(52203066,51973157,51673148,51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金the China Postdoctoral Science Foundation Grant(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal college student’innovation and entrepreneurship training program,China(202110058052)the National innovation and entrepreneurship training program for college students,China(202110058017)。
文摘With the emergence of some solid electrolytes(SSEs)with high ionic conductivity being comparable to liquid electrolytes,solid-state lithium-sulfur batteries(SSLSBs)have been widely regarded as one of the most promising candidates for the next generation of power generation energy storage batteries,and have been extensively researched.Though many fundamental and technological issues still need to be resolved to develop commercially viable technologies,SSLSBs using SSEs are expected to address the present limitations and achieve high energy and power density while improving safety,which is very attractive to large-scale energy storage systems.SSLSBs have been developed for many years.However,there are few systematic discussions related to the working mechanism of action of various electrolytes in SSLSBs and the defects and the corresponding solutions of various electrolytes.To fill this gap,it is very meaningful to review the recent progress of SSEs in SSLSBs.In this review,we comprehensively investigate and summarize the application of SSEs in LSBs to determine the differences which still exist between current progresses and real-world requirements,and comprehensively describe the mechanism of action of SSLSBs,including lithium-ion transport,interfacial contact,and catalytic conversion mechanisms.More importantly,the selection of solid electrolyte materials and the novel design of structures are reviewed and the properties of various SSEs are elucidated.Finally,the prospects and possible future research directions of SSLSBs including designing high electronic/ionic conductivity for cathodes,optimizing electrolytes and developing novel electrolytes with excellent properties,improving electrode/-electrolyte interface stability and enhancing interfacial dynamics between electrolyte and anode,using more advanced test equipment and characterization techniques to analyze conduction mechanism of Li^(+)in SSEs are presented.It is hoped that this review can arouse people’s attention and enlighten the development of functional materials and novel structures of SSEs in the next step.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
基金Supported by the Guangdong Province Basic and Applied Basic Research Fund Project(No.2020A1515110826)the National Natural Science Foundation of China(No.42006115)the Major Scientific and Technological Projects of Hainan Province(No.ZDKJ2021036)。
文摘Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is essential for the survival of sea cucumbers.Six MnSODs were identified from the transcriptomes of deep and shallow-sea sea cucumbers.To explore their environmental adaptation mechanism,we conducted environmental selection pressure analysis through the branching site model of PAML software.We obtained night positive selection sites,and two of them were significant(97F→H,134K→V):97F→H located in a highly conservative characteristic sequence,and its polarity c hange might have a great impact on the function of MnSOD;134K→V had a change in piezophilic a bility,which might help MnSOD adapt to the environment of high hydrostatic pressure in the deepsea.To further study the effect of these two positive selection sites on MnSOD,we predicted the point mutations of F97H and K134V on shallow-sea sea cucumber by using MAESTROweb and PyMOL.Results show that 97F→H,134K→V might improve MnSOD’s efficiency of scavenging superoxide a nion and its ability to resist high hydrostatic pressure by moderately reducing its stability.The above results indicated that MnSODs of deep-sea sea cucumber adapted to deep-sea environments through their amino acid changes in polarity,piezophilic behavior,and local stability.This study revealed the correlation between MnSOD and extreme environment,and will help improve our understanding of the organism’s adaptation mechanisms in deep sea.
基金was funded by the Jiangxi Provincial Social Science Foundation“the 14th Five-Year Plan”(2021)regional project(21DQ44)Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210723)+1 种基金the Doctoral Research Initiation fund of East China University of Technology(DHBK2019184)the Graduate Innovation Fund of East China University of Technology(DHYC-202123).
文摘The assessment of the spatiotemporal evolution of habitat quality caused by land use changes can provide a scientifc basis for the ecological protection and green development of mining cities.Taking Yanshan County as an example of a typical mining city,this article discussed the spatial pattern and evolution characteristics of habitat quality in 2000 and 2018 based on the ArcGIS platform and the InVEST model.The conclusions are as below:from 2000 to 2018,the area of farmland and construction land changed the most in the study area.Among them,the area of farmland decreased by 3.48%,and the area of industrial and mining land and construction land increased by 53.25%.Areas of low,relatively low and high habitat quality expanded,and areas of medium and relatively high habitat quality shrank,which is closely related to the distribution of land use.The areas with high habitat degradation degrees appear around cities,mining areas and watersheds,while the areas with low habitat degradation degrees are mainly distributed in the southern woodland.The distribution of cold and hot spots in the habitat quality distribution of Yanshan County presents a pattern of“hot in the south and cold in the north”.The results are of great signifcance to the precise implementation of ecosystem management decisions in mining cities and the creation of a landscape pattern of“beautiful countrysides,green cities,and green mines”.
基金This work was funded by the budgets from the National Basic Research Plan of China(2018YFA0208903)National Natural Science Foundation of China(21877042,22077038,81972894,81673364)+2 种基金the Ministry of Science and Technology of the People’s Republic of China(2017ZX09101001006)the Fundamental Research Funds for the Central Universities(2632018ZD13)the startup fund of Huazhong University of Science and Technology,and the Priority Academic Program Development of Jiangsu Higher Education Institutions.The authors also thank the assistance from the Research Core Facilities for Life Science(HUST).
文摘The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients.Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising,yet greatly challenging,to reverse postoperative immunosuppression.Here,an injectable hierarchical gel matrix,composed of dual lipid gel(DLG)layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios,was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy.The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide(GO)nanoparticles.GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages(TAMs)and promote an immunogenic tumor microenvironment.The inner layer,loaded with anti-CD47 antibody(aCD47),could maintain the gel state for a much longer time,enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory proteinα(SIRPα)pathway for a long-term antitumor effect.In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape,thereby boosting the systemic immune responses.
基金funded by the Startup Foundation for Doctors of Shanxi Province (Grant No.SD1827)Startup Foundation for Doctors of Shanxi Medical University (Grant No.XD1824) to Y.Li+1 种基金National Natural Science Foundation of China (Grant No.81872147, 81572588)Guangdong Provincial Special Fund of Science Innovation Strategy (Grant No.180918104960680) to Y.Cui
文摘The RAS-RAF-MEK-ERK signaling pathway(MAPK signaling pathway) plays a significant role in multiple pathological behaviors and is most frequently dysregulated in more than 30% of human cancers.As key elements in this pathway, MEK1/2 play crucial roles in tumorigenesis and the inhibition of apoptosis, which makes their inhibition an attractive antitumor strategy.Dozens of potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed that have produced substantial improvement in clinical outcomes over the past decade.However, the efficacy of these agents is limited, and response rates are variable in a wide range of tumors that harbor RAS and RAF mutations due to the development of resistance, which is derived mainly from the persistence of MAPK signaling and increased activation of the mutual feedback networks.Both intrinsic and acquired resistance to MEK inhibitors necessitates the synergistic targeting of both pathways to restore the therapeutic effects of a single agent.In this review, the significant role of the MAPK pathway in carcinogenesis and its therapeutic potential are comprehensively examined with a focus on MEK inhibitors.Then, the activation of feedback networks accompanying MEK inhibition is briefly reviewed.Combination strategies that involve the simultaneous inhibition of the original and resistance pathways are highlighted and elaborately described on the basis of the latest research progress.Finally, the obstacles to the development of MEK-related combination systems are discussed in order to lay the groundwork for their clinical application as frontline treatments for individual patients with MAPK-hyperactivated malignancies.
基金financially supported by the High-level Innovative Talents Training Project of Guizhou Province(QKHPTRC[2016]5658)the Guizhou Province Graduate Research Fund(YJSCXJH[2018]050)the Guizhou Province Graduate Research Fund(YJSCXJH[2018]081)。
文摘Exploring electrode materials with a high volumetric energy density and high rate capability remains of a great challenge for nanosized-Li_(4)Ti_(5)O_(12)(LTO)batteries.Here,hierarchical porous Ti^(3+)-C-N-Br co-doped LTO(LTOCPB-CC)is synthesized using carboxyl-grafted nanocarbon(CC)and cetylpyridinium bromide(CPB)as combined structure-directing agents.Ti^(4+)-O-CPB/Li^(+)-CC is designed as a new molecular chelate,in which CPB and CC promote the uniform mixing of Li^(+)and Ti^(4+)and control the morphology of TiO_(2) and the final product.The defects(oxygen vacancies and ion dopants)formed during the annealing process increase the electron/hole concentration and reduce the band gap,both of which enhance the n-type electron modification of LTO.As-prepared LTOCPB-CC has a large specific surface area and high tap density,as well as a high electronic conductivity(2.84×10^(-4) S cm^(-1))and ionic conductivity(3.82×10^(-12)cm^(2) s^(-1)),which are responsible for its excellent rate capability(157.7 mA h g^(-1) at 20 C)and stable long-term cycling performance(0.008% fade per cycle after 1000 cycles at 20 C).
基金Fund supported by the National Natural Science Foundation of China(81770026)Natural Science Foundation of Jilin Province(20180101157JC).
文摘The clinical data of 3 patients with rhabdomyolysis(RM)caused by different viral infections were retrospectively reviewed.The diagnoses were established according to the clinical symptoms,physical signs,myocardial enzymes,and muscle biopsy.Case 1 was a 11-year-old boy with influenza A virus infection,whose major symptoms were fever,cough and myalgia.After the treatment of active anti-virus,hydration,and alkalinization,the patient completely recovered.Case 2 was a 10-year-old girl with Epstein-Barr(EB)virus infection who had significant musculoskeletal pain and muscle weakness symptoms with significantly elevated serum creatine kinase.After active hydration and anti-infective treatment,the patient s condition returned to normal.Case 3 was a 15-year・old boy with human cytomegalovirus infection,whose symptoms were mainly repeated fever,accompanied by myalgia and facial edema.Antibacterial therapy was ineffective,and the disease progressed with respiratory muscle weakness and multiple organ injuries.After antiviral treatment,respiratory support and hemofiltration,the symptoms relieved and patient recovered without sequela.With literature review,we believe that although influenza virus,Epstein-Barr virus and cytomegalovirus rarely cause RM in children,it should be attached attention to.With early diagnosis and treatment,the prognosis is favorable.
基金This research was funded by Jiangxi Provincial Social Science Foundation“the 14th Five-Year Plan”(2021)regional projects(21DQ44)National Natural Science Foundation of China(41771542)+3 种基金Institutional Research Centers of Jiangxi Provincial of Ecological Civilization Construction(JXST2103)Research Center of Geological Resource Economics and Management(20GL02)Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210723)the Doctoral Research Initiation fund of East China University of Technology(DHBK2019184).
文摘With the continuous growth of the population and the continuous reduction of cultivated land,China’s food security is greatly threatened.In addition,China’s coal mining has been mainly underground mining,causing land subsidence and damaging existing cultivated land.This efect intensifes the contradiction between the growth of the risk population and the reduction of cultivated land.The reclamation of mining subsidence land with Yellow River sediment is often used as an efective way to improve the recovery rate of cultivated land.Shortening the reclamation time and realizing continuous flling are signifcant issues.The work presented in this paper studied the sediment settlement rate and consolidation time by combining theory,feld flling and reclamation tests and numerical simulations.A feld flling test study was carried out in the lowlands of Jibeiwang Village,Qihe County,Shandong Province,China.By calculating the drainage consolidation time,the consolidation factor of 0.015656 m^(2)/d,and the time factor for sediment consolidation of 0.575 were determined.The sediment consolidation time for this test was 9.18 days.The calculation of sediment deposition rate and consolidation time is of great practical signifcance to guide the Yellow River sediment flling,realize continuous flling,and save reclamation time and cost.
文摘Chlorophyll, one of the major chloroplast components for photosynthesis, has a positive relationship with the photosynthetic rate. The chlorophyll content is an important assessment parameter in agronomy and plant biology research. This study was conducted to evaluate the natural variation in the chlorophyll content and to determine the differential response of the chlorophyll concentration to dark treatment in a natural population containing 139 maize inbreds. A five-fold higher chlorophyll concentration was measured in the light compared with the dark. Meanwhile, the wide variation in the chlorophyll concentration showed the differential response of the natural maize population to dark. Finally, we identified some inbreds that were highly sensitive to the dark with more than 70% difference between the light and dark treatment, such as Dan598, Zheng29, Zheng35, DH29, and R08, as well as some inbreds that had lower sensitivity to the dark, with less than 35% difference in the chlorophyll content between the light and dark treatment, such as Chuan48-2, 4F1, 303WX, 9642, and LY042.
基金Supported by Science and Technology Research Project of Universities in Hebei Province,China(QN2014220)
文摘Porcine epidemic diarrhea,a highly contagious enteric infectious disease caused by the porcine epidemic diarrhea virus(PEDV)with symptoms of vomit,diarrhea,loss of appetite of suckling pig,has led to serious economic loss to the global swine industry.In this study,a real-time fluorescence reverse transcription loop-mediated isothermal amplification(RT-LAMP)assay was developed to detect PEDV RNA.The real-time fluorescence RT-LAMP assay was performed at62℃for 60 min,using a simple and portable device,the ESE-Quant Tube Scanner.The detection limit of RNA was 2.9×10^(6) copies/μl,10 times as sensitive as RT-PCR,and the detection was specific only to PEDV.Application of this method to clinical samples yielded a positivity rate of 93%,which was higher than that of RT-PCR.This technique saves time and is efficient,and is thus expected to be useful for the diagnosis of PEDV infection in the field.
基金financially supported by the Yunnan Science and Technology Introducing project(International Science and Technology Cooperation):Construction Project of Coffee Scientific and Technological Demonstration Districts in Mountainous Areas of Northern Laos(2019IB013)High-end Foreign Experts Program of Yunnan Thousand Talents Program(2019013)Yunnan provincial key programs(2019ZG00901,202002AA10007).
文摘The processability and ultimate quality of coffee(Coffea arabica)are determined by the composition of the matured fruits.The basis of genetic variation in coffee fruit quality could be explained by studying color formation during fruit maturation.Transcriptome profiling was conducted on matured fruits of four C.arabica varieties(orange colored fruits(ORF);purple colored fruits(PF);red colored fruits(RF)and yellow colored fruits(YF))to identify key color-regulating genes,biosynthesis pathways and transcription factors implicated in fruit color formation.A total of 39,938 genes were identified in the transcriptomes of the four C.arabica varieties.In all,2745,781 and 1224 differentially expressed genes(DEGs)were detected in YF_vs_PF,YF_vs_RF and YF_vs_ORF,respectively,with 1732 DEGs conserved among the three pairwise groups.Functional annotation of the DEGs led to the detection of 28 and 82 key genes involved in the biosynthesis of carotenoids and anthocyanins,respectively.Key transcription factors bHLH,MYB,NAC,MADS,and WRKY implicated in fruit color regulation were detected.The high expression levels of gene-LOC113688784(PSY),gene-LOC113730013(b-CHY),gene-LOC113728842(CCD7),gene-LOC113689681(NCED)and gene-LOC113729473(ABA2)in YF may have accounted for the yellow coloration.The differential expression of several anthocyanin and carotenoid-specific genes in the fruits substantially account for the purple(PF),red(RF),and orange(ORF)colorations.This study provides important insights into fruit color formation and variations in C.arabica and will help to develop coffee varieties with specific color and quality traits.
基金Shaanxi Provincial Natural Science Basic Research Program(Science and Technology Innovation and Entrepreneurship"Double Mentor System")project"Research on Chinese Medicine Health Culture Based on Chinese Medicine Literature"(2018JM7156)Research on the Inheritance and Development of Characteristic Culture of Traditional Chinese Medicine in the Characteristic Faculty Project of Philosophy and Social Sciences in Shaanxi Universities(Shaanxi Teaching Position[2009]No.6)Shaanxi Provincial Administration of Traditional Chinese Medicine Key Discipline of Traditional Chinese Medicine History and Literature(Shaanxi Traditional Chinese Medicine Development[2018]No.21)。
文摘As one of the many traditional Chinese medicine journals in the Republic of China(ROC)era,the journal"Chinese Medicine Pillar Monthly"had been published for 11 consecutive years.It has rich content and covers a wide range of topics.It has important reference value for studying the direction of cultural development,political dynamics,and development trends of Chinese and Western medicine during the ROC era,and the journal was intended to spread the classics and clinical experience of traditional Chinese medicine,making it a medical treasure house.This paper mainly introduces the current status of the journal,the date of its inception,and its main content,features and contributions.
文摘By summarizing the regulatory, technical requirements and problems of domestic non-special use cosmetics in China, reasonable suggestions were put forward for domestic non-special use cosmetics supervision. The problems encountered in the process of technical review were summarized from 5 aspects by studying on the record information from 2014: the regulatory requirements, record range, record information, label content, and the provincial review standards. The results showed that, due to the regulations issued early and the sectioned management, the domestic non-special use cosmetics was lack of authority and continuity supervision, existed problems such as the variety declaring was beyond the filling range, the information applied was incomplete, the sales package pictures uploaded were not suitable, and the review standards of different provinces were inconsistent. At last, some suggestions were proposed.