Li(Mn1/3Ni1/3Co1/3)O2 cathode materials were fabricated by a hydroxide precursor method. A1203 was coated on the surface of the Li(Mn1/3Ni1/3Co1/3)O2 through a simple and effective one-step electrostatic self-asse...Li(Mn1/3Ni1/3Co1/3)O2 cathode materials were fabricated by a hydroxide precursor method. A1203 was coated on the surface of the Li(Mn1/3Ni1/3Co1/3)O2 through a simple and effective one-step electrostatic self-assembly method. In the coating process, a NaHCO3- H2CO3 buffer was formed spontaneously when CO2 was introduced into the NaAlO2 solution. Compared with bare Li(Mn1/3Ni1/3Co1/3)O2, the surface-modified samples exhibited better cycling performance, rate capability and rate capability retention. The Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 electrodes delivered a discharge capacity of about 115 mAh.g-1 at 2 A.g-1, but only 84 mAh.g-1 for the bare one. The capacity retention of the Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 was 90.7% after 50 cycles, about 30% higher than that of the pristine one.展开更多
Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challengi...Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and electronic structure of the active catalysis components is important in formic acid decomposition at room-temperature.Here,the pyrdinic-nitrogen doped catalysts from hyperbranched polyamide were prepared via in situ polymerization reaction process by using activated carbon as a support.Because of the introduction of the polymer,the particles of the catalysts were stabilized,and the average particle diameter was only 1.64 nm.Under mild conditions,the catalysts activities were evaluated for FAD.The optimized Pd-N30/C catalyst exhibited high performance achieving almost full conversion,with a turnover frequency of 3481 h^-1 at 30℃.展开更多
基金supported by the National Natural Science Foundation of China(21273222)
文摘Li(Mn1/3Ni1/3Co1/3)O2 cathode materials were fabricated by a hydroxide precursor method. A1203 was coated on the surface of the Li(Mn1/3Ni1/3Co1/3)O2 through a simple and effective one-step electrostatic self-assembly method. In the coating process, a NaHCO3- H2CO3 buffer was formed spontaneously when CO2 was introduced into the NaAlO2 solution. Compared with bare Li(Mn1/3Ni1/3Co1/3)O2, the surface-modified samples exhibited better cycling performance, rate capability and rate capability retention. The Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 electrodes delivered a discharge capacity of about 115 mAh.g-1 at 2 A.g-1, but only 84 mAh.g-1 for the bare one. The capacity retention of the Al2O3-coated Li(Mn1/3Ni1/3Co1/3)O2 was 90.7% after 50 cycles, about 30% higher than that of the pristine one.
基金supported by the National Natural Science Foundation of China (21633008, 21733004, and 21603216)Jilin Province Science and Technology Development Program (20180101030JC)+2 种基金the Hundred Talents Program of Chinese Academy of Sciencesthe Recruitment Program of Foreign Experts (WQ20122200077)RFBR (18-53-53025)
文摘Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and electronic structure of the active catalysis components is important in formic acid decomposition at room-temperature.Here,the pyrdinic-nitrogen doped catalysts from hyperbranched polyamide were prepared via in situ polymerization reaction process by using activated carbon as a support.Because of the introduction of the polymer,the particles of the catalysts were stabilized,and the average particle diameter was only 1.64 nm.Under mild conditions,the catalysts activities were evaluated for FAD.The optimized Pd-N30/C catalyst exhibited high performance achieving almost full conversion,with a turnover frequency of 3481 h^-1 at 30℃.