The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
Cancer immunotherapy has emerged as a promising approach in cancer treatment and is considered a major advancement after surgical interventions, radiotherapy, chemotherapy, and targeted therapy. The clinical use of im...Cancer immunotherapy has emerged as a promising approach in cancer treatment and is considered a major advancement after surgical interventions, radiotherapy, chemotherapy, and targeted therapy. The clinical use of immunotherapeutic drugs, particularly antibody-based drugs that target immune checkpoints, has notably increased~1.展开更多
Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is ...Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is still challenging.Herein,we present a facile ion exchange and phosphating processes to transform intestine-like CoNiP_(x)@P,N-C into lotus pod-like CoNiFeP_(x)@P,N-C heterostructure in which numerous P,N-codoped carboncoated CoNiFeP_(x)nanoparticles tightly anchors on the 2D carbon matrix.Meanwhile,the as-prepared CoNiFeP_(x)@P,N-C enables a core-shell structure,high specific surface area,and hierarchical pore structure,which present abundant heterointerfaces and fully exposed active sites.Notably,the incorporation of Fe can also induce electron transfer in CoNiP_(x)@P,IM-C,thereby promoting the oxygen evolution reaction.Consequently,CoNiFeP_(x)@P,IM-C delivers a low overpotential of 278 mV(vs RHE)at a current density of10 mA cm^(-1)and inherits excellent long-term stability with no observable current density decay after 30 h of chronoamperometry test.This work not only highlights heteroatom induction to tune the electronic structure but also provides a facile approach for developing advanced and stable oxygen evolution reaction electrocatalysts with abundant heterointerfaces.展开更多
As indispensable parts of greenhouses and plant factories,agricultural covering films play a prominent role in regulating microclimate environments.Polyethylene covering films directly transmit the full solar spectrum...As indispensable parts of greenhouses and plant factories,agricultural covering films play a prominent role in regulating microclimate environments.Polyethylene covering films directly transmit the full solar spectrum.However,this high level of sunlight transmission may be inappropriate or even harmful for crops with specific photothermal requirements.Modern greenhouses are integrated with agricultural covering materials,heating,ventilation,and air conditioning(HVAC)systems,and smart irrigation and communication technologies to maximize planting efficiency.This review provides insight into the photothermal requirements of crops and ways to meet these requirements,including new materials based on passive radiative cooling and light scattering,simulations to evaluate the energy consumption and environmental conditions in a greenhouse,and data mining to identify key biological growth factors and thereby improve new covering films.Finally,future challenges and directions for photothermalmanagement agricultural films are elaborated on to bridge the gap between lab-scale research and large-scale practical applications.展开更多
Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal...Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources.Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However,MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review,the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.展开更多
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications,due to abundant sodium resources,low cost,intrinsic safety of aqueous electrolytes and eco-friendliness.The e...Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications,due to abundant sodium resources,low cost,intrinsic safety of aqueous electrolytes and eco-friendliness.The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes.Among various electrode materials,Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn,low cost,nontoxicity,eco-friendliness and interesting electrochemical performance.Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials.In this review,we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development.These Mn-based materials include oxides,Prussian blue analogues and polyanion compounds.We summarize and discuss the composition,crystal structure,morphology and electrochemical properties of Mn-based electrode materials.The improvement methods based on electrolyte optimization,element doping or substitution,optimization of morphology and carbon modification are highlighted.The perspectives of Mn-based electrode materials for future studies are also provided.We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.展开更多
Needle-to-plane geometry has been widely investigated and used in underwater pulsed discharges.The position relationship between the needle tip and insulation layer significantly affects the discharge patterns.We carr...Needle-to-plane geometry has been widely investigated and used in underwater pulsed discharges.The position relationship between the needle tip and insulation layer significantly affects the discharge patterns.We carried out experiments on underwater pulsed discharge with the needle tip protruding from,recessing into,and flushing with the insulating tube.The results are as follows.First,underwater pulsed discharge has a strong randomness under the experimental conditions.Different discharge patterns appeared under the same experimental environment.Second,recession into the insulator surface led to a higher probability of occurrence but a lower strength of spark discharge than protrusion.Third,between the needle tip protruding from and recessing into the insulation material,the average speed of propagation of underwater pulsed spark discharge decreased by an order of magnitude.The study shows that the optimum length of needle tip protruding from the insulation layer is 1 mm to obtain a strong underwater pulsed spark discharge.展开更多
Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies.However,the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the bioma...Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies.However,the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression.Here,we propose a self-amplifying logic-gated gene editing strategy for gene/H_(2)O_(2)-mediated/starvation multimodal cancer therapy.In this approach,a hypoxia-degradable covalent-organic framework(COF) is synthesized to coat a-ZIF-8 in which glucose oxidase(GOx) and CRISPR system are packaged.To intensify intracellular redox dyshomeostasis,DNAzymes which can cleave catalase mRNA are loaded as well.When the nano system gets into the tumor,the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx,which amplifies intracellular H^(+)and hypoxia,accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells.These tandem reactions deplete glucose and oxygen,leading to logic-gated-triggered gene editing as well as synergistic gene/H_(2)O_(2)-mediated/starvation therapy.Overall,this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.展开更多
Aside from antibodies,peptides show great potential as immune checkpoint inhibitors(ICIs)due to several advantages,such as better tumor penetration and lower cost.Lymphocyte-activation gene 3(LAG-3)is an immune checkp...Aside from antibodies,peptides show great potential as immune checkpoint inhibitors(ICIs)due to several advantages,such as better tumor penetration and lower cost.Lymphocyte-activation gene 3(LAG-3)is an immune checkpoint which can induce T cell dysfunction through interaction with its soluble ligand fibrinogen like protein-1(FGL1).Here,we found that LAG-3 expression was higher than programmed cell death protein 1(PD-1)in multiple human cancers by TCGA databases,and successfully identified a LAG-3 binding peptide LFP-6 by phage display bio-panning,which specifically blocks the interaction of LAG-3/FGL1 but not LAG-3/MHC-II.Subsequently,D-amino acids were introduced to substitute the N-and C-terminus of LFP-6 to obtain the proteolysis-resistant peptide LFP-D1,which restores T cell function in vitro and inhibits tumor growth in vivo.Further,a bispecific peptide LFOP targeting both PD-1/PD-L1 and LAG-3/FGL1 was designed by conjugating LFP-D1 with PD-1/PD-L1blocking peptide OPBP-1(8-12),which activates T cell with enhanced proliferation and IFN-γ production.More importantly,LFOP combined with radiotherapy significantly improve the T cell infiltration in tumor and elevate systemic antitumor immune response.In conclusion,we developed a novel peptide blocking LAG-3/FGL1 which can restore T cell function,and the bispecific peptide synergizes with radiotherapy to further enhance the antitumor immune response.展开更多
One of the hallmarks of cancer is its inherently immunosuppressive microenvironment,which strategically manipulates surrounding immune cells,signaling molecules,and structural components to shield cancer cells from im...One of the hallmarks of cancer is its inherently immunosuppressive microenvironment,which strategically manipulates surrounding immune cells,signaling molecules,and structural components to shield cancer cells from immune attacks and foster tumor progression1.Such tumor microenvironment is characterized by the presence of immunosuppressive entities such as tumor-associated macrophages,T cells,tumor-associated neutrophils,and myeloid-derived suppressor cells(MDSCs),as well as metabolic alterations like hypoxia2 and elevated lactate levels3.展开更多
The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8^(+)T cell-mediated cytotoxicity.Immune checkpoint blockade(ICB)could induce tumor ferroptosis through I...The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8^(+)T cell-mediated cytotoxicity.Immune checkpoint blockade(ICB)could induce tumor ferroptosis through IFN-γreleased by immune cells,indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth.However,the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet.In this study,the small molecule Hemin that could bind withTIGIT to block TIGIT/PVR interaction was screened by virtual molecular docking and cell-based blocking assay.Hemin could effectively restore the IL-2 secretion from Jurkat-hTIGIT cells.Hemin reinvigorated the function of CD8^(+)T cells to secrete IFN-γand the elevated IFN-γcould synergize with Hemin to induce ferroptosis in tumor cells.Hemin inhibited tumor growth by boosting CD8^(+)T cell immune response and inducing ferroptosis in CT26 tumor model.More importantly,Hemin in combination with PD-1/PD-L1 blockade exhibited more effective antitumor efficacy in anti-PD-1 resistant B16 tumor model.In summary,our finding indicated that Hemin blocked TIGIT/PVR interaction and induced tumor cell ferroptosis,which provided a new therapeutic strategy to combine immunotherapy and ferroptosis for cancer treatment.展开更多
Inflammatory bowel disease(IBD)is an autoimmune gastrointestinal disease characterized by chronic relapsing inflammation of the intestine.Excessive pyroptosis that exists in the inflamed intestine can activate damage ...Inflammatory bowel disease(IBD)is an autoimmune gastrointestinal disease characterized by chronic relapsing inflammation of the intestine.Excessive pyroptosis that exists in the inflamed intestine can activate damage signals and aggravate local inflammation in IBD.Here,we designed an oral pyroptosis nanoinhibitor,DXMS@CuM@PPADT@PSS(DCMP),which can target intestinal lesions,and respond to reactive oxygen species(ROS)to release active sites and drugs at the lesion.DCMP can inhibit the activation of the nucleotide-binding domain and leucine-rich repeat family pyrin domain containing 3(NLRP3)inflammasomes by scavenging ROS,resulting in the down-regulation of gasdermin D(GSDMD)cleavage thus inhibiting pyroptosis.It also improved intestinal barrier function,decreased inflammatory cytokine levels,and increased the diversity of gut microbiota in mice with colitis.This work is believed to expand the biomedical application of nanomaterials for innate immunity modulation.展开更多
As a typical strongly correlated transition oxide,vanadium dioxide(VO_(2))based nanomaterials have drawn many research attentions these years due to the giant metal-to-insulator phase transition(MIPT)at around 68℃.Ho...As a typical strongly correlated transition oxide,vanadium dioxide(VO_(2))based nanomaterials have drawn many research attentions these years due to the giant metal-to-insulator phase transition(MIPT)at around 68℃.However,due to the complexities of the V-O system and interplays between various vanadium oxide phases,the synthesis of high-quality VO_(2)nanopowders is still fraught with many challenges,especially in air atmosphere.In this paper,we report a novel air atmosphere available liquid-shielding synthesis method for thermochromic VO_(2)nanoparticles,by using low-eutectic molten-salt(LiCl-KCl)as the liquid-state air-insulation medium at elevated temperature and high-pressure pressed VOSO_(4)-KCl pillars immersed in these liquid salts as the precursor.Small amounts of glucose are added to introduce a slight reductive environment,and well dispersed VO_(2)nanoparticles with excellent ther-mochromic properties can be directly synthesized at an ultra-low temperature of 375℃.This feasible and atmosphere-available mass-production method is rarely reported in the related fields,which may provide a novel protocol strategy for the synthesis of high performance thermochromic VO_(2)and other functional oxide powders.展开更多
Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types,only a small subset of patients can benefit from PD-1/PD-L1 blockade.CD47 expressed on tumor cells...Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types,only a small subset of patients can benefit from PD-1/PD-L1 blockade.CD47 expressed on tumor cells protects them from phagocytosis through interaction with SIRPαon macrophages,while PD-L1 dampens T cell-mediated tumor killing.Therefore,dual targeting PD-L1 and CD47 may improve the efficacy of cancer immunotherapy.A chimeric peptide Pal-DMPOP was designed by conjugating the double mutation of CD47/SIRPαblocking peptide(DMP)with the truncation of PD-1/PD-L1 blocking peptide OPBP-1(8-12)and was modified by a palmitic acid tail.Pal-DMPOP can significantly enhance macrophage-mediated phagocytosis of tumor cells and activate primary T cells to secret IFN-γin vitro.Due to its superior hydrolysis-resistant activity as well as tumor tissue and lymph node targeting properties,Pal-DMPOP elicited stronger anti-tumor potency than Pal-DMP or OPBP-1(8-12)in immune-competent MC38 tumor-bearing mice.The in vivo anti-tumor activity was further validated in the colorectal CT26 tumor model.Furthermore,Pal-DMPOP mobilized macrophage and T-cell anti-tumor responses with minimal toxicity.Overall,the first bispecific CD47/SIRPαand PD-1/PD-L1 dual-blockade chimeric peptide was designed and exhibited synergistic anti-tumor efficacy via CD8^(+)T cell activation and macrophage-mediated immune response.The strategy could pave the way for designing effective therapeutic agents for cancer immunotherapy.展开更多
Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients.Here,we discovered that the novel immune checkpoint VISTA is highl...Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients.Here,we discovered that the novel immune checkpoint VISTA is highly expressed on a variety of tumor-infiltrating immune cells,especially myeloid derived suppressor cells(MDSCs)and CD8^(+)T cells.Then,peptide C1 with binding affinity to VISTA was developed by phage displayed bio-panning technique,and its mutant peptide VS3 was obtained by molecular docking based mutation.Peptide VS3 could bind VISTA with high affinity and block its interaction with ligand PSGL-1 under acidic condition,and elicit anti-tumor activity in vivo.The peptide DVS3-Pal was further designed by D-amino acid substitution and fatty acid modification,which exhibited strong proteolytic stability and significant anti-tumor activity through enhancing CD8^(+)T cell function and decreasing MDSCs infiltration.This is the first study to develop peptides to block VISTA/PSGL-1 interaction,which could act as promising candidates for cancer immunotherapy.展开更多
With the increasing interest in the application of electrochromism to flexible and wearable electronics in recent years,flexible electrochromic devices(ECDs)that can function at extreme temperatures are required.Howev...With the increasing interest in the application of electrochromism to flexible and wearable electronics in recent years,flexible electrochromic devices(ECDs)that can function at extreme temperatures are required.However,the functionalities of flexible ECDs are severely hampered by the inadequate choice of electrolytes,which might ultimately result in performance fading during low-and high-temperature operations.Here,we develop a deep eutectic solvent(DES)-based gel electrolyte that can maintain its optical,electrical,and mechanical properties over a wide range of temperatures(-40 to 150℃),exhibiting an extremely high visible-range transmittance over 90%,ion conductivity of 0.63 mS cm^(-1),and fracture strain exceeding 2000%.Owing to the excellent processability of the DES-based electrolytes,provided by dynamic interactions such as the lithium and hydrogen bonding between the DES and polymer matrix,a directly written patterning in ECDs is realized for the first time.The fabricated ECDs exhibit an excellent electrochromic behavior superior to the behavior of the ECDs fabricated with traditional gel electrolytes.The introduction of such DES-based electrolytes is expected to pave the way for a widespread application of electrochromic products.展开更多
Low-frequency microwave absorbing materials have been challenging for many years.Three-dimensional dielectric/magnetic porous materials are beneficial for improving the low-frequency microwave absorbing performance be...Low-frequency microwave absorbing materials have been challenging for many years.Three-dimensional dielectric/magnetic porous materials are beneficial for improving the low-frequency microwave absorbing performance because of natural resonance and improved impedance matching.In this study,Fe_(3)O_(4)@C 3D foam was prepared by carbothermal reduction method and the microwave attenuation performances and mechanisms were studied.By adjusting the content of Fe_(3)O_(4)@C 3D foam in paraffin composites,the low-frequency microwave attenuation capacity could be effectively optimized.The minimum reflection loss(RLmin)of paraffin composite with 40%(in mass fraction)loading exhibits-54.7 dB at 4.1 GHz for a thickness of 4.0 mm.Surprisingly,the paraffin composite with 50%(in mass fraction)loading could almost cover 2–4 GHz(S-band)in the thickness range of 3.5–5.5 mm.The strong low-frequency microwave attenuation property of Fe_(3)O_(4)@C 3D foam is mainly attributed to excellent low-frequency impedance matching,natural resonance,interfacial/dipole polarization,multiple reflection and scattering.This method provides a new perspective for preparing lightweight and high performance low-frequency microwave absorbing materials.展开更多
New drug discovery is under growing pressure to satisfy the demand from a wide range of domains, especially from the pharmaceutical industry and healthcare services. Assessment of drug efficacy and safety prior to hum...New drug discovery is under growing pressure to satisfy the demand from a wide range of domains, especially from the pharmaceutical industry and healthcare services. Assessment of drug efficacy and safety prior to human clinical trials is a crucial part of drug development, which deserves greater emphasis to reduce the cost and time in drug discovery. Recent advances in microfabrication and tissue engineering have given rise to organ-on-a-chip, an in vitro model capable of recapitulating human organ functions in vivo and providing insight into disease pathophysiology, which offers a potential alternative to animal models for more efficient pre-clinical screening of drug candidates. In this review, we first give a snapshot of general considerations for organ-on-a-chip device design. Then, we comprehensively review the recent advances in organ-on-a-chip for drug screening. Finally, we summarize some key challenges of the progress in this field and discuss future prospects of organ-on-a-chip development. Overall,this review highlights the new avenue that organ-on-a-chip opens for drug development, therapeutic innovation, and precision medicine.展开更多
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金supported by grants from the National Natural Science Foundation of China (Grant No. U20A20369)GuangDong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120085)。
文摘Cancer immunotherapy has emerged as a promising approach in cancer treatment and is considered a major advancement after surgical interventions, radiotherapy, chemotherapy, and targeted therapy. The clinical use of immunotherapeutic drugs, particularly antibody-based drugs that target immune checkpoints, has notably increased~1.
基金supported by the National Natural Science Foundation of China(No.22269010)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+3 种基金the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(No.20212BCJ23020)the Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ211305)the Jingdezhen Science and Technology Planning Project(No.20212GYZD009-04)the Graduate Innovation Fund of Jiangxi Province(YC2022-s880)
文摘Transition metal phosphides with metallic properties are a promising candidate for electrocatalytic water oxidation,and developing highly active and stable metal phosphide-based oxygen evolution reaction catalysts is still challenging.Herein,we present a facile ion exchange and phosphating processes to transform intestine-like CoNiP_(x)@P,N-C into lotus pod-like CoNiFeP_(x)@P,N-C heterostructure in which numerous P,N-codoped carboncoated CoNiFeP_(x)nanoparticles tightly anchors on the 2D carbon matrix.Meanwhile,the as-prepared CoNiFeP_(x)@P,N-C enables a core-shell structure,high specific surface area,and hierarchical pore structure,which present abundant heterointerfaces and fully exposed active sites.Notably,the incorporation of Fe can also induce electron transfer in CoNiP_(x)@P,IM-C,thereby promoting the oxygen evolution reaction.Consequently,CoNiFeP_(x)@P,IM-C delivers a low overpotential of 278 mV(vs RHE)at a current density of10 mA cm^(-1)and inherits excellent long-term stability with no observable current density decay after 30 h of chronoamperometry test.This work not only highlights heteroatom induction to tune the electronic structure but also provides a facile approach for developing advanced and stable oxygen evolution reaction electrocatalysts with abundant heterointerfaces.
基金support from the National Natural Science Foundation of China(52372088)the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-09-E00020).
文摘As indispensable parts of greenhouses and plant factories,agricultural covering films play a prominent role in regulating microclimate environments.Polyethylene covering films directly transmit the full solar spectrum.However,this high level of sunlight transmission may be inappropriate or even harmful for crops with specific photothermal requirements.Modern greenhouses are integrated with agricultural covering materials,heating,ventilation,and air conditioning(HVAC)systems,and smart irrigation and communication technologies to maximize planting efficiency.This review provides insight into the photothermal requirements of crops and ways to meet these requirements,including new materials based on passive radiative cooling and light scattering,simulations to evaluate the energy consumption and environmental conditions in a greenhouse,and data mining to identify key biological growth factors and thereby improve new covering films.Finally,future challenges and directions for photothermalmanagement agricultural films are elaborated on to bridge the gap between lab-scale research and large-scale practical applications.
基金support by Shanghai Municipal Education Commission (No. 2019-01-07-00-09E00020), for research conducted at the Shanghai Universitysupport by Independent depolyment project of Qinghai Institute of Salt Lakes, Chinese Academy of Sciences (E260GC0401)support by the Singapore National Research Foundation (NRF-CRP26-2021-0003, NRF), for research conducted at the National University of Singapore。
文摘Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources.Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However,MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review,the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.
基金supported by the National Natural Science Foundation of China(Grant No.52272225)Independent deployment project of Qinghai Institute of Salt Lakes,Chinese Academy of Sciences(E260GC0401).
文摘Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications,due to abundant sodium resources,low cost,intrinsic safety of aqueous electrolytes and eco-friendliness.The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes.Among various electrode materials,Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn,low cost,nontoxicity,eco-friendliness and interesting electrochemical performance.Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials.In this review,we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development.These Mn-based materials include oxides,Prussian blue analogues and polyanion compounds.We summarize and discuss the composition,crystal structure,morphology and electrochemical properties of Mn-based electrode materials.The improvement methods based on electrolyte optimization,element doping or substitution,optimization of morphology and carbon modification are highlighted.The perspectives of Mn-based electrode materials for future studies are also provided.We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
基金supported by the Science and Technology Research Project of the Hebei Higher Education Institutions of China No.ZD2014031。
文摘Needle-to-plane geometry has been widely investigated and used in underwater pulsed discharges.The position relationship between the needle tip and insulation layer significantly affects the discharge patterns.We carried out experiments on underwater pulsed discharge with the needle tip protruding from,recessing into,and flushing with the insulating tube.The results are as follows.First,underwater pulsed discharge has a strong randomness under the experimental conditions.Different discharge patterns appeared under the same experimental environment.Second,recession into the insulator surface led to a higher probability of occurrence but a lower strength of spark discharge than protrusion.Third,between the needle tip protruding from and recessing into the insulation material,the average speed of propagation of underwater pulsed spark discharge decreased by an order of magnitude.The study shows that the optimum length of needle tip protruding from the insulation layer is 1 mm to obtain a strong underwater pulsed spark discharge.
基金financially supported by the National Natural Science Foundation of China(21874066,and 82073288)the National Key R&D Program of China(2019YFA0709200)+5 种基金the Key Research and Development Program of Jiangsu Province(BE2021373,China)Jiangsu Provincial Medical Key Discipline Cultivation Unit(JSDW202239,China)the Natural Science Foundation of Jiangsu Province(BK20200336,China)the Fundamental Research Funds for Central Universities(China)the Program for Innovative Talents and Entrepreneur in Jiangsu(China)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0146,China).
文摘Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies.However,the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression.Here,we propose a self-amplifying logic-gated gene editing strategy for gene/H_(2)O_(2)-mediated/starvation multimodal cancer therapy.In this approach,a hypoxia-degradable covalent-organic framework(COF) is synthesized to coat a-ZIF-8 in which glucose oxidase(GOx) and CRISPR system are packaged.To intensify intracellular redox dyshomeostasis,DNAzymes which can cleave catalase mRNA are loaded as well.When the nano system gets into the tumor,the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx,which amplifies intracellular H^(+)and hypoxia,accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells.These tandem reactions deplete glucose and oxygen,leading to logic-gated-triggered gene editing as well as synergistic gene/H_(2)O_(2)-mediated/starvation therapy.Overall,this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.
基金supported by the grants from National Science Foundation of China(U20A20369)“Pearl River Talent Plan”Innovation and Entrepreneurship Team Project of Guangdong Province(2019ZT08Y464,China)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515120085,China)Shenzhen Science and Technology Program(KQTD20190929173853397,China)Henan Provincial Key R&D and Promotion Special(Scientific Problem Tackling)(222102310344,China)。
文摘Aside from antibodies,peptides show great potential as immune checkpoint inhibitors(ICIs)due to several advantages,such as better tumor penetration and lower cost.Lymphocyte-activation gene 3(LAG-3)is an immune checkpoint which can induce T cell dysfunction through interaction with its soluble ligand fibrinogen like protein-1(FGL1).Here,we found that LAG-3 expression was higher than programmed cell death protein 1(PD-1)in multiple human cancers by TCGA databases,and successfully identified a LAG-3 binding peptide LFP-6 by phage display bio-panning,which specifically blocks the interaction of LAG-3/FGL1 but not LAG-3/MHC-II.Subsequently,D-amino acids were introduced to substitute the N-and C-terminus of LFP-6 to obtain the proteolysis-resistant peptide LFP-D1,which restores T cell function in vitro and inhibits tumor growth in vivo.Further,a bispecific peptide LFOP targeting both PD-1/PD-L1 and LAG-3/FGL1 was designed by conjugating LFP-D1 with PD-1/PD-L1blocking peptide OPBP-1(8-12),which activates T cell with enhanced proliferation and IFN-γ production.More importantly,LFOP combined with radiotherapy significantly improve the T cell infiltration in tumor and elevate systemic antitumor immune response.In conclusion,we developed a novel peptide blocking LAG-3/FGL1 which can restore T cell function,and the bispecific peptide synergizes with radiotherapy to further enhance the antitumor immune response.
基金supported by the National Key Research and Development Program of China(2019YFA0709200)the National Natural Science Foundation of China(21874066)+3 种基金the Key Research and Development Program of Jiangsu Province(BE2021373,China)the Natural Science Foundation of Jiangsu Province(BK20200336,China)the State Key Laboratory of Analytical Chemistry for Life Science(5431ZZXM2304,China)the Program for Innovative Talents and Entrepreneur in Jiangsu(China).
文摘One of the hallmarks of cancer is its inherently immunosuppressive microenvironment,which strategically manipulates surrounding immune cells,signaling molecules,and structural components to shield cancer cells from immune attacks and foster tumor progression1.Such tumor microenvironment is characterized by the presence of immunosuppressive entities such as tumor-associated macrophages,T cells,tumor-associated neutrophils,and myeloid-derived suppressor cells(MDSCs),as well as metabolic alterations like hypoxia2 and elevated lactate levels3.
基金supported by the National Natural Science Foundation of China(U1904147,31700677,U20A20369,82272785)Henan Provincial Science and Technology Research Project(232102311172)+3 种基金Shenzhen Science and Technology Program(KQTD20190929173853397)“Pearl River Talent Plan”Innovation and Entrepreneurship Team Project of Guangdong Province(2019ZT08Y464)the Guangdong Basic and Applied Basic Research Foundation(2022B1515120085)Fostering Project for Young Teachers of Zhengzhou University(JC22851042)。
文摘The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8^(+)T cell-mediated cytotoxicity.Immune checkpoint blockade(ICB)could induce tumor ferroptosis through IFN-γreleased by immune cells,indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth.However,the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet.In this study,the small molecule Hemin that could bind withTIGIT to block TIGIT/PVR interaction was screened by virtual molecular docking and cell-based blocking assay.Hemin could effectively restore the IL-2 secretion from Jurkat-hTIGIT cells.Hemin reinvigorated the function of CD8^(+)T cells to secrete IFN-γand the elevated IFN-γcould synergize with Hemin to induce ferroptosis in tumor cells.Hemin inhibited tumor growth by boosting CD8^(+)T cell immune response and inducing ferroptosis in CT26 tumor model.More importantly,Hemin in combination with PD-1/PD-L1 blockade exhibited more effective antitumor efficacy in anti-PD-1 resistant B16 tumor model.In summary,our finding indicated that Hemin blocked TIGIT/PVR interaction and induced tumor cell ferroptosis,which provided a new therapeutic strategy to combine immunotherapy and ferroptosis for cancer treatment.
基金supported by the National Natural Science Foundation of China(Nos.82270543,82170573,81770556 and 21874066)the National Key R&D Program of China(No.2019YFA0709200)+3 种基金the Key Research and Development Program of Jiangsu Province(No.BE2021373)the Natural Science Foundation of Jiangsu Province(No.BK20200336)the Fundamental Research Funds for Central Universities,and the Program for Innovative Talents and Entrepreneur in Jiangsu.All animal studies were approved by the Ethics Committee of Jinling Hospital(No.2021JLHDWLSZ-0010)Surgical specimens were collected from Department of Gastroenterology and Hepatology,General Hospital of Eastern Theater Command.The use of human biopsies was approved by the Ethics Committee of Jinling Hospital(No.2022DZKY-048-01).All patients enrolled were given informed written consent.
文摘Inflammatory bowel disease(IBD)is an autoimmune gastrointestinal disease characterized by chronic relapsing inflammation of the intestine.Excessive pyroptosis that exists in the inflamed intestine can activate damage signals and aggravate local inflammation in IBD.Here,we designed an oral pyroptosis nanoinhibitor,DXMS@CuM@PPADT@PSS(DCMP),which can target intestinal lesions,and respond to reactive oxygen species(ROS)to release active sites and drugs at the lesion.DCMP can inhibit the activation of the nucleotide-binding domain and leucine-rich repeat family pyrin domain containing 3(NLRP3)inflammasomes by scavenging ROS,resulting in the down-regulation of gasdermin D(GSDMD)cleavage thus inhibiting pyroptosis.It also improved intestinal barrier function,decreased inflammatory cytokine levels,and increased the diversity of gut microbiota in mice with colitis.This work is believed to expand the biomedical application of nanomaterials for innate immunity modulation.
基金supported in part by funding from the National Natural Science Foundation of China(NSFC,Contract Nos.:51502268,51325203)the Open Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2022e04)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)the Provincial and Ministerial Co-construction of Collaborative Innovation Center for Resource Materials(Contract No.:zycl202008).
文摘As a typical strongly correlated transition oxide,vanadium dioxide(VO_(2))based nanomaterials have drawn many research attentions these years due to the giant metal-to-insulator phase transition(MIPT)at around 68℃.However,due to the complexities of the V-O system and interplays between various vanadium oxide phases,the synthesis of high-quality VO_(2)nanopowders is still fraught with many challenges,especially in air atmosphere.In this paper,we report a novel air atmosphere available liquid-shielding synthesis method for thermochromic VO_(2)nanoparticles,by using low-eutectic molten-salt(LiCl-KCl)as the liquid-state air-insulation medium at elevated temperature and high-pressure pressed VOSO_(4)-KCl pillars immersed in these liquid salts as the precursor.Small amounts of glucose are added to introduce a slight reductive environment,and well dispersed VO_(2)nanoparticles with excellent ther-mochromic properties can be directly synthesized at an ultra-low temperature of 375℃.This feasible and atmosphere-available mass-production method is rarely reported in the related fields,which may provide a novel protocol strategy for the synthesis of high performance thermochromic VO_(2)and other functional oxide powders.
基金the National Natural Science Foundation of China(U20A20369,81901687)Shenzhen Science and Technology Program(KQTD20190929173853397)+1 种基金“Pearl River Talent Plan”Innovation and Entrepreneurship Team Project of Guangdong Province(2019ZT08Y464)Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20190807154819245)。
文摘Although immune checkpoint inhibition has been shown to effectively activate antitumor immunity in various tumor types,only a small subset of patients can benefit from PD-1/PD-L1 blockade.CD47 expressed on tumor cells protects them from phagocytosis through interaction with SIRPαon macrophages,while PD-L1 dampens T cell-mediated tumor killing.Therefore,dual targeting PD-L1 and CD47 may improve the efficacy of cancer immunotherapy.A chimeric peptide Pal-DMPOP was designed by conjugating the double mutation of CD47/SIRPαblocking peptide(DMP)with the truncation of PD-1/PD-L1 blocking peptide OPBP-1(8-12)and was modified by a palmitic acid tail.Pal-DMPOP can significantly enhance macrophage-mediated phagocytosis of tumor cells and activate primary T cells to secret IFN-γin vitro.Due to its superior hydrolysis-resistant activity as well as tumor tissue and lymph node targeting properties,Pal-DMPOP elicited stronger anti-tumor potency than Pal-DMP or OPBP-1(8-12)in immune-competent MC38 tumor-bearing mice.The in vivo anti-tumor activity was further validated in the colorectal CT26 tumor model.Furthermore,Pal-DMPOP mobilized macrophage and T-cell anti-tumor responses with minimal toxicity.Overall,the first bispecific CD47/SIRPαand PD-1/PD-L1 dual-blockade chimeric peptide was designed and exhibited synergistic anti-tumor efficacy via CD8^(+)T cell activation and macrophage-mediated immune response.The strategy could pave the way for designing effective therapeutic agents for cancer immunotherapy.
基金supported by grants from the National Natural Science Foundation of China (U1904147,U20A20369)Shenzhen Science and Technology Program (KQTD20190929173853397,China)“Pearl River Talent Plan”Innovation and Entrepreneurship Team Project of Guangdong Province (2019ZT08Y464,China)。
文摘Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients.Here,we discovered that the novel immune checkpoint VISTA is highly expressed on a variety of tumor-infiltrating immune cells,especially myeloid derived suppressor cells(MDSCs)and CD8^(+)T cells.Then,peptide C1 with binding affinity to VISTA was developed by phage displayed bio-panning technique,and its mutant peptide VS3 was obtained by molecular docking based mutation.Peptide VS3 could bind VISTA with high affinity and block its interaction with ligand PSGL-1 under acidic condition,and elicit anti-tumor activity in vivo.The peptide DVS3-Pal was further designed by D-amino acid substitution and fatty acid modification,which exhibited strong proteolytic stability and significant anti-tumor activity through enhancing CD8^(+)T cell function and decreasing MDSCs infiltration.This is the first study to develop peptides to block VISTA/PSGL-1 interaction,which could act as promising candidates for cancer immunotherapy.
基金External Cooperation Program of the Chinese Academy of Sciences,Grant/Award Number:121E32KYSB20190008National Natural Science Foundation of China,Grant/Award Numbers:22175198,51972331,52172299+3 种基金Outstanding Youth Fund of Jiangxi,Grant/Award Number:20192BCBL23027Six Talent Peaks Project in Jiangsu Province,Grant/Award Number:XCL-170the National Key Research and Development Program of China,Grant/Award Number:2020YFB1505703Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2018356.
文摘With the increasing interest in the application of electrochromism to flexible and wearable electronics in recent years,flexible electrochromic devices(ECDs)that can function at extreme temperatures are required.However,the functionalities of flexible ECDs are severely hampered by the inadequate choice of electrolytes,which might ultimately result in performance fading during low-and high-temperature operations.Here,we develop a deep eutectic solvent(DES)-based gel electrolyte that can maintain its optical,electrical,and mechanical properties over a wide range of temperatures(-40 to 150℃),exhibiting an extremely high visible-range transmittance over 90%,ion conductivity of 0.63 mS cm^(-1),and fracture strain exceeding 2000%.Owing to the excellent processability of the DES-based electrolytes,provided by dynamic interactions such as the lithium and hydrogen bonding between the DES and polymer matrix,a directly written patterning in ECDs is realized for the first time.The fabricated ECDs exhibit an excellent electrochromic behavior superior to the behavior of the ECDs fabricated with traditional gel electrolytes.The introduction of such DES-based electrolytes is expected to pave the way for a widespread application of electrochromic products.
基金This work is financially supported by the National Natural Science Foundation of China(51873102)Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-09-E00020).
文摘Low-frequency microwave absorbing materials have been challenging for many years.Three-dimensional dielectric/magnetic porous materials are beneficial for improving the low-frequency microwave absorbing performance because of natural resonance and improved impedance matching.In this study,Fe_(3)O_(4)@C 3D foam was prepared by carbothermal reduction method and the microwave attenuation performances and mechanisms were studied.By adjusting the content of Fe_(3)O_(4)@C 3D foam in paraffin composites,the low-frequency microwave attenuation capacity could be effectively optimized.The minimum reflection loss(RLmin)of paraffin composite with 40%(in mass fraction)loading exhibits-54.7 dB at 4.1 GHz for a thickness of 4.0 mm.Surprisingly,the paraffin composite with 50%(in mass fraction)loading could almost cover 2–4 GHz(S-band)in the thickness range of 3.5–5.5 mm.The strong low-frequency microwave attenuation property of Fe_(3)O_(4)@C 3D foam is mainly attributed to excellent low-frequency impedance matching,natural resonance,interfacial/dipole polarization,multiple reflection and scattering.This method provides a new perspective for preparing lightweight and high performance low-frequency microwave absorbing materials.
基金financial support from the National Key R&D Program of China (2019YFA0709200)the National Natural Science Foundation of China (21874066, and 61804076)+3 种基金the Key Research and Development Program of Jiangsu Province (BE2021373, China)the Natural Science Foundation of Jiangsu Province (BK20180700, and BK20200336, China)the Fundamental Research Funds for Central Universities (China)the Program for Innovative Talents and Entrepreneur in Jiangsu (China)。
文摘New drug discovery is under growing pressure to satisfy the demand from a wide range of domains, especially from the pharmaceutical industry and healthcare services. Assessment of drug efficacy and safety prior to human clinical trials is a crucial part of drug development, which deserves greater emphasis to reduce the cost and time in drug discovery. Recent advances in microfabrication and tissue engineering have given rise to organ-on-a-chip, an in vitro model capable of recapitulating human organ functions in vivo and providing insight into disease pathophysiology, which offers a potential alternative to animal models for more efficient pre-clinical screening of drug candidates. In this review, we first give a snapshot of general considerations for organ-on-a-chip device design. Then, we comprehensively review the recent advances in organ-on-a-chip for drug screening. Finally, we summarize some key challenges of the progress in this field and discuss future prospects of organ-on-a-chip development. Overall,this review highlights the new avenue that organ-on-a-chip opens for drug development, therapeutic innovation, and precision medicine.