Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children...Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.展开更多
Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated tha...Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated that melatonin and dopamine alleviated waterlogging by removing reactive oxygen species(ROS),and that the nitric oxide(NO)content and nitrate reductase(NR)activity were significantly correlated.Melatonin and dopamine were also found to recruit different candidate beneficial endophytes(melatonin:Novosphingobium,Propionivibrio,and Cellvibrio;dopamine:Hydrogenophaga,Simplicispira,Methyloversatilis,Candidatus_Kaiserbacteria,and Humicola),and these endophytes were significantly and positively correlated with plant growth.Network analyses showed that melatonin and dopamine significantly affected the endophytic bacterial and fungal communities under waterlogging stress.The metabolomic results showed that melatonin and dopamine led to waterlogging resistance by upregulating the abundance of beneficial substances such as amino acids,flavonoids,coumarins,and organic acids.In addition,melatonin and dopamine regulated the physicochemical properties of the soil,which altered the endophyte community and affected plant growth.The co-occurrence network demonstrated close and complex relationships among endophytes,metabolites,soil,and the plants.Our results demonstrate that melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience.This study provides new insights into how melatonin and dopamine alleviate stress and a theoretical basis for synergistic beneficial microbial resistance to waterlogging stress.展开更多
Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing counte...Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.展开更多
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp...Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.展开更多
Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity,...Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.展开更多
This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise consta...This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions.展开更多
In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the cata...In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability.展开更多
AIM:To evaluate the trend of glaucoma internal filtration surgeries for inpatients between 2015 and 2021 at the Eye Hospital of Wenzhou Medical University.METHODS:A review of the medical records of inpatients who had ...AIM:To evaluate the trend of glaucoma internal filtration surgeries for inpatients between 2015 and 2021 at the Eye Hospital of Wenzhou Medical University.METHODS:A review of the medical records of inpatients who had been diagnosed with glaucoma and received antiglaucoma surgery between January 1,2015 and December 31,2021 was conducted.The glaucoma diagnosis in this study included primary open angle glaucoma,primary angleclosure glaucoma,secondary glaucoma,and paediatric glaucoma.The types of surgeries were categorised as internal filtration,external filtration,and cyclodestruction surgery based on the pathway of aqueous humor outflow.The trend of these glaucoma surgeries in the sample of patients with different types of glaucoma was then analysed.RESULTS:The number of patients hospitalised for glaucoma surgery increased yearly,from 752 in 2015 to 1373 in 2021,at the Eye Hospital of Wenzhou Medical University.Regarding the patients diagnosed with primary open angle glaucoma,internal filtration surgery increased from 27.40%of the sample to 54.40%of the sample,while external filtration surgery decreased from 71.50%to 44.20%between 2015 and 2021.For paediatric glaucoma,internal filtration surgery increased from 37.50%in 2015 to 88.20%in 2021.Whilst different types of surgeries were performed on the sample of patients with secondary glaucoma,the proportion of internal filtration surgery also showed an increase from 18.20%in 2015 to 40.90%in 2021.Meanwhile,internal filtration surgery in the patient sample with primary angle-closure glaucoma already accounted for over 70.00%in 2015,and showed a small increase by 2021.CONCLUSION:As surgical technology and surgical experience continue to elevate and improve,the range of glaucoma surgeries are correspondingly evolving.This study find that internal filtration surgeries accounted for an increasing proportion of treatments in the surgical management of glaucoma between 2015 and 2021.展开更多
Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In ...Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In this study,carbon(C),nitrogen(N),and phosphorus(P)concentrations were evaluated in plant tissues(trees,shrubs,and herbs),litter,and soil of young(≤40-year-old),middle-aged(41–60-year-old),near-mature(61–80-year-old),and mature(81–120-year-old)Quercus secondary forests on the Loess Plateau,China.Vegetation composition,plant biomass,and C stock were determined to illustrate their interaction with stoichiometry.Only tree biomass C signifi cantly increased with stand development.Leaf N and trunk P concentrationsgenerally increased,but branch P decreased with growth stage.Fine roots had the highest C and P concentrations at the middle-aged stage.In contrast,shrubs,herbs,litter,and soil C:N:P stoichiometry did not change signifi cantly during stand development.Leaf N and P were positively correlated with soil C,N,P,and their ratios.However,there was no signifi cant correlation between litter and leaves in terms of C:N:P stoichiometry.A redundancy analysis showed that soil N best explained leaf N and P variance,and tree biomass and C stock were related to biotic factors such as tree age and shrub biomass.Hierarchical partitioning analysis indicated that,compared with soil or litter variables,stand age only accounted for a relatively small proportion of leaf C,N,and P variation.Thus,secondary Quercus ecosystems might have inherent ability to maintain sensitive responses of metabolically active organs to environmental factors during stand aging.The results of this work help to elucidate the biogeochemical cycling of secondary forest ecosystems in tree development,provide novel insights into the adaptation strategies of plants in diff erent organs and growth stages,and could be used to guide fertilization programs and optimize forest structure.展开更多
Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively cont...Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more.展开更多
基金the financial support from the National Key R&D Program of China(No.2022YFC2904501)the National Natural Science Foundation of China(Nos.52004335,91962223)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2023JJ20071)Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources,China(No.2021CB1002)。
基金supported by the National Natural Science Foundation of China(82171001,82222015)Research Funding from West China School/Hospital of Stomatology Sichuan University(RCDWJS2023-1)Align Technology Specialized Scientific Research Fund(21H0922).
文摘Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.
基金supported by the National Natural Science Foundation of China(31901964)the Natural Science Foundation of Hebei,China(C2021204158)+3 种基金the Science and Technology Project of Hebei Education Department,China(BJK2022012)the Introduced Talents Project of Hebei Agricultural University,China(YJ201904)the earmarked fund for Hebei Apple Innovation Team of Modern Agroindustry Technology Research System,China(HBCT2024150205)the earmarked fund for the China Agricultural Research System,China(CARS-27).
文摘Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated that melatonin and dopamine alleviated waterlogging by removing reactive oxygen species(ROS),and that the nitric oxide(NO)content and nitrate reductase(NR)activity were significantly correlated.Melatonin and dopamine were also found to recruit different candidate beneficial endophytes(melatonin:Novosphingobium,Propionivibrio,and Cellvibrio;dopamine:Hydrogenophaga,Simplicispira,Methyloversatilis,Candidatus_Kaiserbacteria,and Humicola),and these endophytes were significantly and positively correlated with plant growth.Network analyses showed that melatonin and dopamine significantly affected the endophytic bacterial and fungal communities under waterlogging stress.The metabolomic results showed that melatonin and dopamine led to waterlogging resistance by upregulating the abundance of beneficial substances such as amino acids,flavonoids,coumarins,and organic acids.In addition,melatonin and dopamine regulated the physicochemical properties of the soil,which altered the endophyte community and affected plant growth.The co-occurrence network demonstrated close and complex relationships among endophytes,metabolites,soil,and the plants.Our results demonstrate that melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience.This study provides new insights into how melatonin and dopamine alleviate stress and a theoretical basis for synergistic beneficial microbial resistance to waterlogging stress.
基金supported by National Natural Science Foundation of China(31901964)the Science and Technology Project of Hebei Education Department,China(BJK2022012)+3 种基金the Innovation Ability Training Project for Graduate Student of Hebei Province,China(CXZZBS2023071)the Introduced Talents Project of Hebei Agricultural University,China(YJ201904)the Key Research and Development Project of Hebei Province,China(21326308D-02-03)the Earmarked Fund for the China Agricultural Research System,China(CARS-27).
文摘Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry.
基金supported by the National Natural Science Foundation of China(Grant Nos.52162012,52262014,22368019)Key Research and Development Project of Hainan Province(Grant Nos.ZDYF2022SHFZ053,ZDYF2021GXJS209)+1 种基金Science and Technology Innovation Talent Platform Fund for South China Sea New Star of Hainan Province(Grant No.NHXXRCXM202305)Open Research Project of State Key Laboratory of Marine Resource Utilization in South China Sea(Grant No.MRUKF2023020).
文摘Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity.
基金National Natural Science Foundation of China(82070398,81922008)Key Basic Research Projects of Basic Strengthening Plan(2022-JCJQ-ZD-095-00)Top Young Talents Special Support Program in Shaanxi Province(2020).
文摘Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.
基金supported by the National Natural Science Foundation of China(11871134,12171166)the Fundamental Research Funds for the Central Universities(DUT23LAB303)。
文摘This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions.
基金support from the National Key R&D Program of China,China (Nos.2022YFA1505200)the National Natural Science Foundation of China,China (Nos.21872114,92163103,and 21972121)the Fundamental Research Funds for the Central Universities,China (Nos.20720210017 and 20720210009)。
文摘In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability.
基金funded by the National Key R&D Program of China(No.2022YFC2904501)the National Natural Science Foundation of China(Nos.52004335,52004337)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2023JJ20071)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3067)the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China(No.2018TP1002)。
基金Supported by the National Key Research and Development Project of China(No.2020YFC2008200)the Program for Zhejiang Leading Talent of S&T Innovation(No.2021R52012)+1 种基金Key Research and Development Projects of Zhejiang Province(No.2022C03112)the Zhejiang Provincial Program for the Cultivation of Leading Talents in Colleges and Universities(No.2020099)。
文摘AIM:To evaluate the trend of glaucoma internal filtration surgeries for inpatients between 2015 and 2021 at the Eye Hospital of Wenzhou Medical University.METHODS:A review of the medical records of inpatients who had been diagnosed with glaucoma and received antiglaucoma surgery between January 1,2015 and December 31,2021 was conducted.The glaucoma diagnosis in this study included primary open angle glaucoma,primary angleclosure glaucoma,secondary glaucoma,and paediatric glaucoma.The types of surgeries were categorised as internal filtration,external filtration,and cyclodestruction surgery based on the pathway of aqueous humor outflow.The trend of these glaucoma surgeries in the sample of patients with different types of glaucoma was then analysed.RESULTS:The number of patients hospitalised for glaucoma surgery increased yearly,from 752 in 2015 to 1373 in 2021,at the Eye Hospital of Wenzhou Medical University.Regarding the patients diagnosed with primary open angle glaucoma,internal filtration surgery increased from 27.40%of the sample to 54.40%of the sample,while external filtration surgery decreased from 71.50%to 44.20%between 2015 and 2021.For paediatric glaucoma,internal filtration surgery increased from 37.50%in 2015 to 88.20%in 2021.Whilst different types of surgeries were performed on the sample of patients with secondary glaucoma,the proportion of internal filtration surgery also showed an increase from 18.20%in 2015 to 40.90%in 2021.Meanwhile,internal filtration surgery in the patient sample with primary angle-closure glaucoma already accounted for over 70.00%in 2015,and showed a small increase by 2021.CONCLUSION:As surgical technology and surgical experience continue to elevate and improve,the range of glaucoma surgeries are correspondingly evolving.This study find that internal filtration surgeries accounted for an increasing proportion of treatments in the surgical management of glaucoma between 2015 and 2021.
基金supported by the National Nature Science Foundation of China(No.41977418 and 42130717)National Key R&D Program of China(2016YFC0501703 and 2017YFC0504605)CAS“Light of West China”Program(XAB201702).
文摘Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In this study,carbon(C),nitrogen(N),and phosphorus(P)concentrations were evaluated in plant tissues(trees,shrubs,and herbs),litter,and soil of young(≤40-year-old),middle-aged(41–60-year-old),near-mature(61–80-year-old),and mature(81–120-year-old)Quercus secondary forests on the Loess Plateau,China.Vegetation composition,plant biomass,and C stock were determined to illustrate their interaction with stoichiometry.Only tree biomass C signifi cantly increased with stand development.Leaf N and trunk P concentrationsgenerally increased,but branch P decreased with growth stage.Fine roots had the highest C and P concentrations at the middle-aged stage.In contrast,shrubs,herbs,litter,and soil C:N:P stoichiometry did not change signifi cantly during stand development.Leaf N and P were positively correlated with soil C,N,P,and their ratios.However,there was no signifi cant correlation between litter and leaves in terms of C:N:P stoichiometry.A redundancy analysis showed that soil N best explained leaf N and P variance,and tree biomass and C stock were related to biotic factors such as tree age and shrub biomass.Hierarchical partitioning analysis indicated that,compared with soil or litter variables,stand age only accounted for a relatively small proportion of leaf C,N,and P variation.Thus,secondary Quercus ecosystems might have inherent ability to maintain sensitive responses of metabolically active organs to environmental factors during stand aging.The results of this work help to elucidate the biogeochemical cycling of secondary forest ecosystems in tree development,provide novel insights into the adaptation strategies of plants in diff erent organs and growth stages,and could be used to guide fertilization programs and optimize forest structure.
基金supported by the National Natural Science Foundation of China(52003203 and 52075422)the Rapid Manufacturing Engineering Technology Research Center of Shaanxi Province(2017HBGC-06)the Youth Innovation Team of Shaanxi Universities,and the K.C.Wong Education Foundation.
文摘Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more.