Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebr...Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA.展开更多
OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like g...OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.展开更多
Objective:To evaluate the value of DWI,DCE-MRI and magnetic resonance imaging(MRI)in the diagnosis of endometrial cancer.Method:The MRI,DWI and DCE-MRI imaging data of 80 patients with suspected endometrial cancer wer...Objective:To evaluate the value of DWI,DCE-MRI and magnetic resonance imaging(MRI)in the diagnosis of endometrial cancer.Method:The MRI,DWI and DCE-MRI imaging data of 80 patients with suspected endometrial cancer were analyzed.The diagnostic value of MRI,DWI and DCE-MRI in endometrial cancer was analyzed based on the postoperative pathological diagnosis results.The diagnostic efficacy of quantitative parameters Ktrans value,Kep value,Ve value and ADC in endometrial cancer was analyzed by ROC.Result:Among the 80 patients,61 had endometrial carcinoma and 19 had benign endometrial disease.The accuracy of MRI,DWI and DCE-MRI in the diagnosis of endometrial cancer was 57.38%,63.93%and 80.33%,respectively.The specificity was 78.95%,82.41%and 84.21%,respectively.The ADC values of endometrial cancer patients were lower than those of benign patients(P<0.05),and the values of Ktrans,Kep and Ve were higher than those of benign patients(P<0.05).The ktrans and ADC in the diagnosis of endometrial cancer were higher,which was 0.922(95%CI:0.864-0.992,P=0.000)and 0.872(95%CI:0.767-0.977.P=0.000),respectively.Conclusion:DWI and DCE-MRI had high value in the diagnosis of endometrial cancer.Its parameters,Ktrans and ADC,can be used as quantitative indicators for the early diagnosis of endometrial cancer.展开更多
Taking the Qi and Yin deficiency syndrome as an example,the research method of pharmacology of syndrome management system was proposed.By means of text mining,systematic pharmacology and target analysis,to attempt to ...Taking the Qi and Yin deficiency syndrome as an example,the research method of pharmacology of syndrome management system was proposed.By means of text mining,systematic pharmacology and target analysis,to attempt to reveal the essence of the corresponding syndrome by studying the drugs and targets of Qi and Yin deficiency.Fourteen Chinese herbs treating Qi and Yin deficiency were retrieved and used more than 30 times,and 9,317 related targets were predicted.The common targets of action were 85.Topological analysis was carried out by using degree centrality,closeness centrality and betweenness centrality to confirm that estrogen receptor(ESR1),tumor necrosis factor(TNF),D(2)dopamine receptor(DRD2),vitamin D3 receptor(VDR),glucocorticoid receptor(NR3C1),acetylcholinesterase(ACHE)and endothelin-1(EDN1)were highly correlated with Qi and Yin deficiency syndrome.Through the target to find Qi and Yin deficiency syndrome corresponding to 17 categories of diseases.A new idea was provided for studying the biological essence of TCM clinical syndrome differentiation.展开更多
为鉴定鱼源鲁氏耶尔森氏菌(Yersinia ruckeri)SC09菌株水生环境中不同温度的转录组水平上的差异,研究采用链特异性转录组测序(Strand-specific RNA-seq)技术对菌体生理温度(28℃)和实验培养温度(37℃)下进行链特异性测序,原始数据质控后...为鉴定鱼源鲁氏耶尔森氏菌(Yersinia ruckeri)SC09菌株水生环境中不同温度的转录组水平上的差异,研究采用链特异性转录组测序(Strand-specific RNA-seq)技术对菌体生理温度(28℃)和实验培养温度(37℃)下进行链特异性测序,原始数据质控后,筛选得到差异表达基因,通过KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库对差异表达基因进行富集分析,并利用Rockhopper软件筛选出的重要原核生物基因簇进行验证。结果显示,共筛选获得173个显著差异表达基因(P<0.05),其中包括58个上调基因,主要富集到一些特殊的碳水化合物代谢相关的通路中;以及115个下调基因,主要富集到双组份信号系统中与三羧酸循环相关的代谢通路上,同时部分基因富集到编码鞭毛素相关的基因簇中。结果表明,相对于37℃的实验室培养温度,在水生环境的生理温度条件下(28℃)SC09菌株拥有较高的运动性和较强的葡萄糖代谢,但相对的SC09菌株代谢一些特殊糖类的能力减弱。展开更多
Oxidative stress is a crucial pathological process that contributes to secondary injury following intracerebral hemorrhage. P2X7 receptor(P2X7R), which is activated by the abnormal accumulation of extracellular ATP, p...Oxidative stress is a crucial pathological process that contributes to secondary injury following intracerebral hemorrhage. P2X7 receptor(P2X7R), which is activated by the abnormal accumulation of extracellular ATP, plays an important role in the regulation of oxidative stress in the central nervous system, although the effects of activated P2X7R-associated oxidative stress after intracerebral hemorrhage remain unclear. Mouse models of intracerebral hemorrhage were established through the stereotactic injection of 0.075 U VII collagenase into the right basal ganglia. The results revealed that P2X7R expression peaked 24 hours after intracerebral hemorrhage, and P2X7R expressed primarily in neurons. The inhibition of P2X7R, using A438079(100 mg/kg, intraperitoneal), reduced nicotinamide adenine dinucleotide phosphate oxidase 2(NOX2) expression and malondialdehyde generation, increased superoxide dismutase and glutathione/oxidized glutathione levels, and alleviated neurological damage, brain edema, and apoptosis after intracellular hemorrhage. The P2X7R inhibitor A438079(100 mg/kg, intraperitoneal injection) inhibited the activation of extracellular signal-regulated kinase 1/2(ERK1/2) and nuclear factor kappa-B(NF-κB) after intracerebral hemorrhage. Blocking ERK1/2 activation, using the ERK1/2 inhibitor U0126(2 μg, intraventricular injection), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation after intracellular hemorrhage. Similarly, the inhibition of NF-κB, using the NF-κB inhibitor JSH-23(3.5 μg, intraventricular), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation. Finally, GSK2795039(100 mg/kg, intraperitoneal), a NOX2 antagonist, attenuated P2X7R-mediated oxidative stress, neurological damage, and brain edema after intracerebral hemorrhage. The results indicated that P2X7R activation aggravated NOX2-induced oxidative stress through the activation of the ERK1/2 and NF-κB pathways following intracerebral hemorrhage in mice. The present study was approved by the Ethics Committee of Huazhong University of Science and Technology, China(approval No. TJ-A20160805) on August 26, 2016.展开更多
We report the experimental investigation of the superconductor-metal quantum phase transition of the Eu O/KTa O3 interface.Around the transition,a divergence of the dynamical critical exponent is observed,which suppor...We report the experimental investigation of the superconductor-metal quantum phase transition of the Eu O/KTa O3 interface.Around the transition,a divergence of the dynamical critical exponent is observed,which supports the quantum Griffiths singularity in the Eu O/KTa O3 interface.The quantum Griffiths singularity could be attributed to large rare superconducting regions and quenched disorders at the interface.Our results could pave the way for studying the exotic superconducting properties at the Eu O/KTa O3 interface.展开更多
G protein-coupled receptor kinase 2(GRK2),as a key Ser/Thr protein kinase,belong to the member of the G protein-coupled receptor kinase(GRK)family.The C-terminus of GRK2 including a plekstrin homology domain and the N...G protein-coupled receptor kinase 2(GRK2),as a key Ser/Thr protein kinase,belong to the member of the G protein-coupled receptor kinase(GRK)family.The C-terminus of GRK2 including a plekstrin homology domain and the N-terminus of GRK2 including the RGS homology domain with binding sites for several proteins and lipids such as G protein-coupled receptors(GPCRs),G protein,phospholipase C,phosphatidylinositol 4,5-bisphosphate,extracellular signal-regulated kinase,protein kinase A and Gβγ,which can regulate the activity of GRK2.GRK2 can regulate GPCR desensitization and internalization by phosphorylating the GPCR,promoting the affinity of binding to arrestins,and uncoupling the receptors from G proteins,which play an important role in maintaining the balance between the receptors and signal transduction.Previous studies have indicated that cardiac GRK2overexpression can promote the phosphorylation ofβ-adrenergic receptor(βAR)leading toβAR desensitization and internalization,which play a pivotal role in inducing heart failure(HF)-related dysfunction and myocyte death.GRK2,as a regulator of cell function,is overexpression in hypertension.Overexpression GRK2 can inhibit Akt/e NOS signaling pathway and decreased the production and activation of e NOS leading to endothelial dysfunction.Collagen-induced arthritis induces the upregulation of GRK2 expression in fibroblast-like synoviocytes.In this review,we mainly discussed the evidence for the association between GRK2 overexpression and various diseases,which suggests that GRK2 may be an effective drug target for preventing and treating heart failure,hypertension and inflammatory disease.展开更多
2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. Howe...2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.展开更多
Rheumatoid arthritis(RA)is an autoimmune disease and is mainly characterized by abnormal proliferation of fibroblast-like synoviocytes(FLS).The up-regulated cellular membrane expression of G protein coupled receptor k...Rheumatoid arthritis(RA)is an autoimmune disease and is mainly characterized by abnormal proliferation of fibroblast-like synoviocytes(FLS).The up-regulated cellular membrane expression of G protein coupled receptor kinase 2(GRK2)of FLS plays a critical role in RA progression,the increase of GRK2 translocation activity promotes dysfunctional prostaglandin E4 receptor(EP4)signaling and FLS abnormal proliferation.Recently,although our group found that paeoniflorin-6’-O-benzene sulfonate(CP-25),a novel compound,could reverse FLS dysfunction via GRK2,little is known as to how GRK2 translocation activity is suppressed.Our findings revealed that GRK2 expression up-regulated and EP4 expression down-regulated in synovial tissues of RA patients and collagen-induced arthritis(CIA)rats,and prostaglandin E2(PGE2)level increased in arthritis.CP-25 could down-regulate GRK2 expression,up-regulate EP4 expression,and improve synovitis of CIA rats.CP-25 and GRK2 inhibitors(paroxetine or GSK180736 A)inhibited the abnormal proliferation of FLS in RA patients and CIA rats by down-regulating GRK2 translocation to EP4 receptor.The results of microscale thermophoresis(MST),cellular thermal shift assay,and inhibition of kinase activity assay indicated that CP-25 could directly target GRK2,increase the protein stability of GRK2 in cells,and inhibit GRK2 kinase activity.The docking of CP-25 and GRK2 suggested that the kinase domain of GRK2 might be an important active pocket for CP-25.G201,K220,K230,A321,and D335 in kinase domain of GRK2 might form hydrogen bonds with CP-25.Site-directed mutagenesis and co-immunoprecipitation assay further revealed that CP-25 down-regulated the interaction of GRK2 and EP4 via controlling the key amino acid residue of Ala321 of GRK2.Our data demonstrate that FLS proliferation is regulated by GRK2 translocation to EP4.Targeted inhibition of GRK2 kinase domain by CP-25 improves FLS function and represents an innovative drug for the treatment of RA by targeting GRK2.展开更多
Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems.The heterogeneity of the osteoimmune microenvironment in the osseointegratio...Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems.The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive.Here,a single-cell study involving 40043 cells is conducted,and a total of 10 distinct cell clusters are identified from five different groups.A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties.The increased immature neutrophils,Ly6C+CCR2hi monocytes,and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant.The enrichment of mature neutrophils,FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response.Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration.Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis.These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of‘osteoimmune-smart’biomaterials in the bone regeneration field.展开更多
Congenital heart disease(CHD)has an estimated prevalence of 0.9%,with 0.3%requiring interventional or surgical intervention very early in life.Currently,CHD surgery tends to be performed at a younger age.The continued...Congenital heart disease(CHD)has an estimated prevalence of 0.9%,with 0.3%requiring interventional or surgical intervention very early in life.Currently,CHD surgery tends to be performed at a younger age.The continued management of the condition is dependent on postoperative care and rehabilitation since the success rate of surgery has significantly increased[1,2].According to American Heart Association guidelines published in 2012.展开更多
In order to explore the molecular mechanisms behind the pathogenesis of acute liver failure(ALF)associated with hepatitis B virus(HBV)infection,the present study aimed to identify potential key genes and pathways invo...In order to explore the molecular mechanisms behind the pathogenesis of acute liver failure(ALF)associated with hepatitis B virus(HBV)infection,the present study aimed to identify potential key genes and pathways involved using samples from patients with HBV-associated ALF.The GSE38941 array dataset was downloaded from the Gene Expression Omnibus database,and differentially expressed genes(DEGs)between 10 liver samples from 10 healthy donors and 17 liver specimens from 4 patients with HBV-associated ALF were analyzed using the Linear Models for Microarray Data package.Gene Ontology and KEGG pathway enrichment analyses of the DEGs were performed,followed by functional annotation of the genes and construction of a proteineprotein interaction(PPI)network.Subnetwork modules were subsequently identified and analyzed.In total,3142 DEGs were identified,of which 1755 were upregulated and 1387 were downregulated.The extracellular exosome,immune response,and inflammatory response pathways may potentially be used as biomarkers of ALF pathogenesis.In total,17 genes(including CCR5,CXCR4,ALB,C3,VGEFA,and IGF1)were identified as hub genes in the PPI network and may therefore be potential marker genes for HBV-associated ALF.展开更多
基金supported by the National Natural Science Foundation of China,specifically through grants(No.8227431382074321).
文摘Background:Choerospondias axillaris(CA)is a traditional Mongolian medicine that has been proven to have a good therapeutic effect on cerebrovascular disease.Cerebral Ischemia(CI)is a severe and life-threatening cerebrovascular disease.However,the specific mechanism of action of CA in the treatment of CI is still unclear.Methods:In this study,the related targets and pathways of CA in the treatment of CI were first predicted by system pharmacology and then verified by relevant experiments.Results:The results showed that 12 active ingredients and 208 targets were selected.Further validation through protein-protein interaction(PPI)network analysis and active ingredients-target-pathway(A-T-P)network analysis has confirmed the pivotal roles of the main bioactive constituents,including quercetin,kaempferol,naringin,β-sitosterol,and gallic acid.These components exert their anti-ischemic effects by modulating key targets such as IL6,TNF,MAPK3,and CASP3,thereby regulating the PI3K-Akt,HIF-1,and MAPK signaling pathways,which are integral to processes like inflammation,apoptosis,and oxidative stress.More importantly,through experimental verification,this study confirmed our prediction that CAE significantly reduced neurological function scores,infarct volume,and the percentage of apoptosis neurons.Conclusion:This indicates that CA acts on CI through multi-target synergistic mechanism,and this study provides theoretical basis for the clinical application of CA.
基金supported by National Natural Science Foundation of China(81502123 and81330081)Natural Science Foundation of Anhui Province(1308085QH130)Anhui Province Nature Science Foundation in University(KJ2014A119)
文摘OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.
文摘Objective:To evaluate the value of DWI,DCE-MRI and magnetic resonance imaging(MRI)in the diagnosis of endometrial cancer.Method:The MRI,DWI and DCE-MRI imaging data of 80 patients with suspected endometrial cancer were analyzed.The diagnostic value of MRI,DWI and DCE-MRI in endometrial cancer was analyzed based on the postoperative pathological diagnosis results.The diagnostic efficacy of quantitative parameters Ktrans value,Kep value,Ve value and ADC in endometrial cancer was analyzed by ROC.Result:Among the 80 patients,61 had endometrial carcinoma and 19 had benign endometrial disease.The accuracy of MRI,DWI and DCE-MRI in the diagnosis of endometrial cancer was 57.38%,63.93%and 80.33%,respectively.The specificity was 78.95%,82.41%and 84.21%,respectively.The ADC values of endometrial cancer patients were lower than those of benign patients(P<0.05),and the values of Ktrans,Kep and Ve were higher than those of benign patients(P<0.05).The ktrans and ADC in the diagnosis of endometrial cancer were higher,which was 0.922(95%CI:0.864-0.992,P=0.000)and 0.872(95%CI:0.767-0.977.P=0.000),respectively.Conclusion:DWI and DCE-MRI had high value in the diagnosis of endometrial cancer.Its parameters,Ktrans and ADC,can be used as quantitative indicators for the early diagnosis of endometrial cancer.
文摘Taking the Qi and Yin deficiency syndrome as an example,the research method of pharmacology of syndrome management system was proposed.By means of text mining,systematic pharmacology and target analysis,to attempt to reveal the essence of the corresponding syndrome by studying the drugs and targets of Qi and Yin deficiency.Fourteen Chinese herbs treating Qi and Yin deficiency were retrieved and used more than 30 times,and 9,317 related targets were predicted.The common targets of action were 85.Topological analysis was carried out by using degree centrality,closeness centrality and betweenness centrality to confirm that estrogen receptor(ESR1),tumor necrosis factor(TNF),D(2)dopamine receptor(DRD2),vitamin D3 receptor(VDR),glucocorticoid receptor(NR3C1),acetylcholinesterase(ACHE)and endothelin-1(EDN1)were highly correlated with Qi and Yin deficiency syndrome.Through the target to find Qi and Yin deficiency syndrome corresponding to 17 categories of diseases.A new idea was provided for studying the biological essence of TCM clinical syndrome differentiation.
文摘为鉴定鱼源鲁氏耶尔森氏菌(Yersinia ruckeri)SC09菌株水生环境中不同温度的转录组水平上的差异,研究采用链特异性转录组测序(Strand-specific RNA-seq)技术对菌体生理温度(28℃)和实验培养温度(37℃)下进行链特异性测序,原始数据质控后,筛选得到差异表达基因,通过KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库对差异表达基因进行富集分析,并利用Rockhopper软件筛选出的重要原核生物基因簇进行验证。结果显示,共筛选获得173个显著差异表达基因(P<0.05),其中包括58个上调基因,主要富集到一些特殊的碳水化合物代谢相关的通路中;以及115个下调基因,主要富集到双组份信号系统中与三羧酸循环相关的代谢通路上,同时部分基因富集到编码鞭毛素相关的基因簇中。结果表明,相对于37℃的实验室培养温度,在水生环境的生理温度条件下(28℃)SC09菌株拥有较高的运动性和较强的葡萄糖代谢,但相对的SC09菌株代谢一些特殊糖类的能力减弱。
基金supported by the National Natural Science Foundation of China,Nos,81471201,81873750the Science and Technology Plan Project of Wuhan of China,No.2018060401011316 (all to ZPT)。
文摘Oxidative stress is a crucial pathological process that contributes to secondary injury following intracerebral hemorrhage. P2X7 receptor(P2X7R), which is activated by the abnormal accumulation of extracellular ATP, plays an important role in the regulation of oxidative stress in the central nervous system, although the effects of activated P2X7R-associated oxidative stress after intracerebral hemorrhage remain unclear. Mouse models of intracerebral hemorrhage were established through the stereotactic injection of 0.075 U VII collagenase into the right basal ganglia. The results revealed that P2X7R expression peaked 24 hours after intracerebral hemorrhage, and P2X7R expressed primarily in neurons. The inhibition of P2X7R, using A438079(100 mg/kg, intraperitoneal), reduced nicotinamide adenine dinucleotide phosphate oxidase 2(NOX2) expression and malondialdehyde generation, increased superoxide dismutase and glutathione/oxidized glutathione levels, and alleviated neurological damage, brain edema, and apoptosis after intracellular hemorrhage. The P2X7R inhibitor A438079(100 mg/kg, intraperitoneal injection) inhibited the activation of extracellular signal-regulated kinase 1/2(ERK1/2) and nuclear factor kappa-B(NF-κB) after intracerebral hemorrhage. Blocking ERK1/2 activation, using the ERK1/2 inhibitor U0126(2 μg, intraventricular injection), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation after intracellular hemorrhage. Similarly, the inhibition of NF-κB, using the NF-κB inhibitor JSH-23(3.5 μg, intraventricular), reduced the level of NOX2-mediated oxidative stress induced by P2X7R activation. Finally, GSK2795039(100 mg/kg, intraperitoneal), a NOX2 antagonist, attenuated P2X7R-mediated oxidative stress, neurological damage, and brain edema after intracerebral hemorrhage. The results indicated that P2X7R activation aggravated NOX2-induced oxidative stress through the activation of the ERK1/2 and NF-κB pathways following intracerebral hemorrhage in mice. The present study was approved by the Ethics Committee of Huazhong University of Science and Technology, China(approval No. TJ-A20160805) on August 26, 2016.
基金Supported by the National Key R&D Program of China(Grant Nos.2019YFA0308401 and 2017YFA0303301)the National Natural Science Foundation of China(Grant Nos.11974025,11674009,and 11934016)+1 种基金the Beijing Natural Science Foundation(Grant No.1192009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report the experimental investigation of the superconductor-metal quantum phase transition of the Eu O/KTa O3 interface.Around the transition,a divergence of the dynamical critical exponent is observed,which supports the quantum Griffiths singularity in the Eu O/KTa O3 interface.The quantum Griffiths singularity could be attributed to large rare superconducting regions and quenched disorders at the interface.Our results could pave the way for studying the exotic superconducting properties at the Eu O/KTa O3 interface.
基金supported by National Natural Science Foundation of China(8150212381330081)+1 种基金Natural Science Foundation of Anhui Province(1308085QH130)Provincial Natural Science Research Foundation of Anhui Province(KJ2014A119)
文摘G protein-coupled receptor kinase 2(GRK2),as a key Ser/Thr protein kinase,belong to the member of the G protein-coupled receptor kinase(GRK)family.The C-terminus of GRK2 including a plekstrin homology domain and the N-terminus of GRK2 including the RGS homology domain with binding sites for several proteins and lipids such as G protein-coupled receptors(GPCRs),G protein,phospholipase C,phosphatidylinositol 4,5-bisphosphate,extracellular signal-regulated kinase,protein kinase A and Gβγ,which can regulate the activity of GRK2.GRK2 can regulate GPCR desensitization and internalization by phosphorylating the GPCR,promoting the affinity of binding to arrestins,and uncoupling the receptors from G proteins,which play an important role in maintaining the balance between the receptors and signal transduction.Previous studies have indicated that cardiac GRK2overexpression can promote the phosphorylation ofβ-adrenergic receptor(βAR)leading toβAR desensitization and internalization,which play a pivotal role in inducing heart failure(HF)-related dysfunction and myocyte death.GRK2,as a regulator of cell function,is overexpression in hypertension.Overexpression GRK2 can inhibit Akt/e NOS signaling pathway and decreased the production and activation of e NOS leading to endothelial dysfunction.Collagen-induced arthritis induces the upregulation of GRK2 expression in fibroblast-like synoviocytes.In this review,we mainly discussed the evidence for the association between GRK2 overexpression and various diseases,which suggests that GRK2 may be an effective drug target for preventing and treating heart failure,hypertension and inflammatory disease.
基金financially supported by the National Science Foundation of China(Nos.51572007 and 51622203),"Recruitment Program of Global Experts"
文摘2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.
基金supported by the Key Project of National Natural Science Foundation of China(No.81330081)Surface Project of National Natural Science Foundation of China(No.81673444)Youth Science Fund Project of National Natural Science Foundation of China(No.81502123)
文摘Rheumatoid arthritis(RA)is an autoimmune disease and is mainly characterized by abnormal proliferation of fibroblast-like synoviocytes(FLS).The up-regulated cellular membrane expression of G protein coupled receptor kinase 2(GRK2)of FLS plays a critical role in RA progression,the increase of GRK2 translocation activity promotes dysfunctional prostaglandin E4 receptor(EP4)signaling and FLS abnormal proliferation.Recently,although our group found that paeoniflorin-6’-O-benzene sulfonate(CP-25),a novel compound,could reverse FLS dysfunction via GRK2,little is known as to how GRK2 translocation activity is suppressed.Our findings revealed that GRK2 expression up-regulated and EP4 expression down-regulated in synovial tissues of RA patients and collagen-induced arthritis(CIA)rats,and prostaglandin E2(PGE2)level increased in arthritis.CP-25 could down-regulate GRK2 expression,up-regulate EP4 expression,and improve synovitis of CIA rats.CP-25 and GRK2 inhibitors(paroxetine or GSK180736 A)inhibited the abnormal proliferation of FLS in RA patients and CIA rats by down-regulating GRK2 translocation to EP4 receptor.The results of microscale thermophoresis(MST),cellular thermal shift assay,and inhibition of kinase activity assay indicated that CP-25 could directly target GRK2,increase the protein stability of GRK2 in cells,and inhibit GRK2 kinase activity.The docking of CP-25 and GRK2 suggested that the kinase domain of GRK2 might be an important active pocket for CP-25.G201,K220,K230,A321,and D335 in kinase domain of GRK2 might form hydrogen bonds with CP-25.Site-directed mutagenesis and co-immunoprecipitation assay further revealed that CP-25 down-regulated the interaction of GRK2 and EP4 via controlling the key amino acid residue of Ala321 of GRK2.Our data demonstrate that FLS proliferation is regulated by GRK2 translocation to EP4.Targeted inhibition of GRK2 kinase domain by CP-25 improves FLS function and represents an innovative drug for the treatment of RA by targeting GRK2.
基金The study was supported by grants from the National Natural Science Foundation of China(No.82271026)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(No.2019C03081).
文摘Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems.The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive.Here,a single-cell study involving 40043 cells is conducted,and a total of 10 distinct cell clusters are identified from five different groups.A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties.The increased immature neutrophils,Ly6C+CCR2hi monocytes,and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant.The enrichment of mature neutrophils,FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response.Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration.Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis.These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of‘osteoimmune-smart’biomaterials in the bone regeneration field.
文摘Congenital heart disease(CHD)has an estimated prevalence of 0.9%,with 0.3%requiring interventional or surgical intervention very early in life.Currently,CHD surgery tends to be performed at a younger age.The continued management of the condition is dependent on postoperative care and rehabilitation since the success rate of surgery has significantly increased[1,2].According to American Heart Association guidelines published in 2012.
基金The author would like to thank Dr Longke Ran(Department of Bioinformatics,Chongqing Medical University,Chongqing 400016,China)for his advice and support.
文摘In order to explore the molecular mechanisms behind the pathogenesis of acute liver failure(ALF)associated with hepatitis B virus(HBV)infection,the present study aimed to identify potential key genes and pathways involved using samples from patients with HBV-associated ALF.The GSE38941 array dataset was downloaded from the Gene Expression Omnibus database,and differentially expressed genes(DEGs)between 10 liver samples from 10 healthy donors and 17 liver specimens from 4 patients with HBV-associated ALF were analyzed using the Linear Models for Microarray Data package.Gene Ontology and KEGG pathway enrichment analyses of the DEGs were performed,followed by functional annotation of the genes and construction of a proteineprotein interaction(PPI)network.Subnetwork modules were subsequently identified and analyzed.In total,3142 DEGs were identified,of which 1755 were upregulated and 1387 were downregulated.The extracellular exosome,immune response,and inflammatory response pathways may potentially be used as biomarkers of ALF pathogenesis.In total,17 genes(including CCR5,CXCR4,ALB,C3,VGEFA,and IGF1)were identified as hub genes in the PPI network and may therefore be potential marker genes for HBV-associated ALF.