An aging-induced decrease in Schwann cell viability can affect regeneration following peripheral nerve injury in mammals. It is therefore necessary to investigate possible age-related changes in gene expression that m...An aging-induced decrease in Schwann cell viability can affect regeneration following peripheral nerve injury in mammals. It is therefore necessary to investigate possible age-related changes in gene expression that may affect the biological function of peripheral nerves. Ten 1-week-old and ten 12-month-old healthy male Sprague-Dawley rats were divided into young(1 week old) and adult(12 months old) groups according to their ages. mRNA expression in the sciatic nerve was compared between young and adult rats using next-generation sequencing(NGS) and bioinformatics(n = 4/group). The 18 groups of differentially expressed mRNA(DEmRNAs) were also tested by quantitative reverse transcription polymerase chain reaction(n = 6/group). Results revealed that(1) compared with young rats, adult rats had 3608 groups of DEmRNAs. Of these, 2684 were groups of upregulated genes, and 924 were groups of downregulated genes. Their functions mainly involved cell viability, proliferation, differentiation, regeneration, and myelination.(2) The gene with the most obvious increase of all DEmRNAs in adult rats was Thrsp(log2 FC = 9.01, P 〈 0.05), and the gene with the most obvious reduction was Col2 a1(log2 FC = -8.89, P 〈 0.05).(3) Gene Ontology analysis showed that DEmRNAs were mainly concentrated in oligosaccharide binding, nucleotide-binding oligomerization domain containing one signaling pathway, and peptide-transporting ATPase activity.(4) Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that, with increased age, DEmRNAs were mainly enriched in steroid biosynthesis, Staphylococcus aureus infection, and graft-versus-host disease.(5) Spearman's correlation coefficient method for evaluating NGS accuracy showed that the NGS results and quantitative reverse transcription polymerase chain reaction results were positively correlated(rs = 0.74, P 〈 0.05). These findings confirm a difference in sciatic nerve gene expression between adult and young rats, suggesting that, in peripheral nerves, cells and the microenvironment change with age, thus influencing the function and repair of peripheral nerves.展开更多
The experimental design evaluated histological,mechanical,and biological properties of allogeneic decellularized nerves after cryopreservation in a multi-angle,multi-directional manner to provide evidence for long-ter...The experimental design evaluated histological,mechanical,and biological properties of allogeneic decellularized nerves after cryopreservation in a multi-angle,multi-directional manner to provide evidence for long-term preservation.Acellular nerve allografts from human and rats were cryopreserved in a cryoprotectant(10% fetal bovine serum,10% dimethyl sulfoxide,and 5% sucrose in RPMI1640 medium) at-80°C for 1 year,followed by thawing at 40°C or 37°C for 8 minutes.The breaking force of acellular nerve allografts was measured using a tensile test.Cell survival was determined using L-929 cell suspensions.Acellular nerve allografts were transplanted into a rat model with loss of a 15-mm segment of the left sciatic nerve.Immunohistochemistry staining was used to measure neurofilament 200 expression.Hematoxylin-eosin staining was utilized to detect relative muscle area in gastrocnemius muscle.Electron microscopy was applied to observe changes in allograft ultrastructure.There was no obvious change in morphological appearance or ultrastructure,breaking force,or cytotoxicity of human acellular nerve allografts after cryopreservation at-80°C.Moreover,there was no remarkable change in neurofilament 200 expression,myelin sheath thickness,or muscle atrophy when fresh or cryopreserved rat acellular nerve allografts were applied to repair nerve injury in rats.These results suggest that cryopreservation can greatly extend the storage duration of acellular nerve tissue allografts without concomitant alteration of the physiochemical and biological properties of the engineered tissue to be used for transplantation.展开更多
To solve the problems of the color,texture mismatch and lack of sensory after skin graft,Brent applied tissue expansion technique in microtia reconstruction in 1980.More recently,several groups from China and Korea re...To solve the problems of the color,texture mismatch and lack of sensory after skin graft,Brent applied tissue expansion technique in microtia reconstruction in 1980.More recently,several groups from China and Korea reported their successful experiences of soft tissue expansion technique in microtia reconstruction with excellent results and low complication rate.[1]One of the critical questions is whether there is enough skin or not after the expansion.Unfortunately,this question may only be answered by an empirical judgment from the experienced surgeons.In this article,the authors introduced the preliminary results of a new objective and quantitative measuring system by using three-dimensional(3D)surface scanning technique to help the surgeons in microtia reconstruction with tissue expansion technique.展开更多
基金supported by the National Natural Science Foundation of China,No.81201546(to YXL)the Doctoral Start-up Program of Natural Science Foundation of Guangdong Province of China,No.2017A030310302(to ZWZ)+1 种基金the Medical Scientific Research Foundation of Guangdong Province of China,No.A2016018(to BH)the Science and Technology Project of Guangdong Province of China,No.2016A010103012(to JHL)
文摘An aging-induced decrease in Schwann cell viability can affect regeneration following peripheral nerve injury in mammals. It is therefore necessary to investigate possible age-related changes in gene expression that may affect the biological function of peripheral nerves. Ten 1-week-old and ten 12-month-old healthy male Sprague-Dawley rats were divided into young(1 week old) and adult(12 months old) groups according to their ages. mRNA expression in the sciatic nerve was compared between young and adult rats using next-generation sequencing(NGS) and bioinformatics(n = 4/group). The 18 groups of differentially expressed mRNA(DEmRNAs) were also tested by quantitative reverse transcription polymerase chain reaction(n = 6/group). Results revealed that(1) compared with young rats, adult rats had 3608 groups of DEmRNAs. Of these, 2684 were groups of upregulated genes, and 924 were groups of downregulated genes. Their functions mainly involved cell viability, proliferation, differentiation, regeneration, and myelination.(2) The gene with the most obvious increase of all DEmRNAs in adult rats was Thrsp(log2 FC = 9.01, P 〈 0.05), and the gene with the most obvious reduction was Col2 a1(log2 FC = -8.89, P 〈 0.05).(3) Gene Ontology analysis showed that DEmRNAs were mainly concentrated in oligosaccharide binding, nucleotide-binding oligomerization domain containing one signaling pathway, and peptide-transporting ATPase activity.(4) Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that, with increased age, DEmRNAs were mainly enriched in steroid biosynthesis, Staphylococcus aureus infection, and graft-versus-host disease.(5) Spearman's correlation coefficient method for evaluating NGS accuracy showed that the NGS results and quantitative reverse transcription polymerase chain reaction results were positively correlated(rs = 0.74, P 〈 0.05). These findings confirm a difference in sciatic nerve gene expression between adult and young rats, suggesting that, in peripheral nerves, cells and the microenvironment change with age, thus influencing the function and repair of peripheral nerves.
基金supported by the National Natural Science Foundation of China,No.81201546the Doctoral Start-up Program of Natural Science Foundation of Guangdong Province of China,No.2017A030310302+1 种基金the Medical Scientific Research Foundation of Guangdong Province of China,No.A2016018grants from the Science and Technology Project of Guangdong Province of China,No.2016A010103012,2013B010404019
文摘The experimental design evaluated histological,mechanical,and biological properties of allogeneic decellularized nerves after cryopreservation in a multi-angle,multi-directional manner to provide evidence for long-term preservation.Acellular nerve allografts from human and rats were cryopreserved in a cryoprotectant(10% fetal bovine serum,10% dimethyl sulfoxide,and 5% sucrose in RPMI1640 medium) at-80°C for 1 year,followed by thawing at 40°C or 37°C for 8 minutes.The breaking force of acellular nerve allografts was measured using a tensile test.Cell survival was determined using L-929 cell suspensions.Acellular nerve allografts were transplanted into a rat model with loss of a 15-mm segment of the left sciatic nerve.Immunohistochemistry staining was used to measure neurofilament 200 expression.Hematoxylin-eosin staining was utilized to detect relative muscle area in gastrocnemius muscle.Electron microscopy was applied to observe changes in allograft ultrastructure.There was no obvious change in morphological appearance or ultrastructure,breaking force,or cytotoxicity of human acellular nerve allografts after cryopreservation at-80°C.Moreover,there was no remarkable change in neurofilament 200 expression,myelin sheath thickness,or muscle atrophy when fresh or cryopreserved rat acellular nerve allografts were applied to repair nerve injury in rats.These results suggest that cryopreservation can greatly extend the storage duration of acellular nerve tissue allografts without concomitant alteration of the physiochemical and biological properties of the engineered tissue to be used for transplantation.
文摘To solve the problems of the color,texture mismatch and lack of sensory after skin graft,Brent applied tissue expansion technique in microtia reconstruction in 1980.More recently,several groups from China and Korea reported their successful experiences of soft tissue expansion technique in microtia reconstruction with excellent results and low complication rate.[1]One of the critical questions is whether there is enough skin or not after the expansion.Unfortunately,this question may only be answered by an empirical judgment from the experienced surgeons.In this article,the authors introduced the preliminary results of a new objective and quantitative measuring system by using three-dimensional(3D)surface scanning technique to help the surgeons in microtia reconstruction with tissue expansion technique.