Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-tur...Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-turbidity shelf(Chukchi Sea).The ISUS-measured nitrate concentrations closely reproduced the results measured by conventional bottle methods in low-turbidity waters.However,for high-turbidity waters of the East China Sea(salinity<30),a correction factor of 1.19 was required to match the standard bottle measurements.The high-resolution ISUS data revealed subtle spatial variability(e.g.,a subsurface nitrate minimum)that may have been missed if based solely on bottle results.Four main structures of the nitracline on the East China Sea are apparent from the ISUS nitrate profile.High-resolution nitrate data are important for studying nitrate budgets and nutrient dynamics on continental shelves.展开更多
Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributi...Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.展开更多
During the 3rd Chinese National Arctic Research Expedition cruise in the summer of 2008,nutrients(NO3^-,NO2^-,SiO3^2-,and PO4^3-)and dissolved oxygen were measured in the western Arctic Ocean,to derive the vertical di...During the 3rd Chinese National Arctic Research Expedition cruise in the summer of 2008,nutrients(NO3^-,NO2^-,SiO3^2-,and PO4^3-)and dissolved oxygen were measured in the western Arctic Ocean,to derive the vertical distribution of nutrient tracers and its relationship to water structure and biogeochemical processes.The nutrient data show that surface waters had the lowest NO3^-/PO4^3-(mean of 0.5)and SiO3^2-/PO3^-(mean of 2.8)values in the water column,suggesting an excess of phosphate.Winter Bering Shelf water(wBSW)had high Si^*(16.7μmol/L;Si^*=[Si(OH)4]–[NO3^-])with negative N^*(−11.7μmol/L;N^*=[PO4^3-]−16[PO4^3-]+3.5μmol/L)in the water column,indicating nitrate deficiency.The warm Atlantic layer had positive N^*(0.8μmol/L)and negative Si^*(−5.4μmol/L)compared with Pacific source water.The vertical distribution of nutrients indicates that wBSW can be characterized by N^* minimum and Si^* maximum.In contrast,minima of Si^* and SiO3^2-/PO4^3- below 200 m indicate the distribution of Atlantic warm water.展开更多
The nutrient-rich Pacific Ocean seawater that flows through the Bering Strait into the Chukchi Sea is generally considered to be the most important source of nutrients to the Arctic euphotic zone.The inflow is charact...The nutrient-rich Pacific Ocean seawater that flows through the Bering Strait into the Chukchi Sea is generally considered to be the most important source of nutrients to the Arctic euphotic zone.The inflow is characterized by nitrogen deficit and low nitrate/phosphate(N/P)ratios;this is ascribed to sedimentary denitrification on the Chukchi shelf by preoccupant opinions.However,the Chukchi Sea also has high primary production,which raises the question of whether the biological pump may also significantly modulate nutrient properties of the throughflow.Here,we show that nitrate concentrations of the Pacific inflow gradually decrease northward in association with notable biological utilization.The phytoplankton N/P uptake ratio was 8.8±2.27,higher than the N/P ratio of Pacific inflow water(5-6).This uptake ratio,in combination with efficient vertical nitrogen export,serves to preferentially remove nitrogen(relative to phosphorus)from upper waters,thereby further intensifying the Arctic nitrogen deficit.Accordingly,as large as about 111.7×10^(9)mol N yr^(−1)of nitrate was extra consumed,according to the real N/P uptake ratio rather than the ratio of the Pacific inflow,which may be as great as half the nitrogen loss ascribed to sedimentary denitrification.Our findings suggest that besides sedimentary denitrification,biological disproportionate utilization of nutrients in the Chukchi Sea upper water is another important contributor to the nitrogen limitation and excess phosphorus in the upper Arctic Ocean.In the rapid Arctic change era,the predicted reinforced biological carbon pump could further impact the nutrient dynamics and biogeochemical process of the Arctic Ocean.展开更多
基金The National Key Research and Development Program of China under contract No.2019YFE0120900the Natural Science Foundation of Zhejiang Province under contract No.Y19D060024+1 种基金the National Natural Science Foundation of China under contract Nos U1709202 and 41806228the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea(LORCE).
文摘Here,we report the results of high-resolution nitrate measurements using an optical nitrate profiler(in situ ultraviolet spectrophotometer,ISUS)along transect across a high-turbidity shelf(East China Sea)and a low-turbidity shelf(Chukchi Sea).The ISUS-measured nitrate concentrations closely reproduced the results measured by conventional bottle methods in low-turbidity waters.However,for high-turbidity waters of the East China Sea(salinity<30),a correction factor of 1.19 was required to match the standard bottle measurements.The high-resolution ISUS data revealed subtle spatial variability(e.g.,a subsurface nitrate minimum)that may have been missed if based solely on bottle results.Four main structures of the nitracline on the East China Sea are apparent from the ISUS nitrate profile.High-resolution nitrate data are important for studying nitrate budgets and nutrient dynamics on continental shelves.
基金The Zhejiang Provincial Natural Science Foundation of China under contract No.LZ22D060002the Key R&D Program of Zhejiang under contract No.2022C03044the National Key Research and Development Program of China under contract No.2021YFC3101702。
文摘Eutrophication caused by inputs of excess nitrogen(N) has become a serious environmental problem in Hangzhou Bay(China),but the sources of this nitrogen are not well understood.In this study,the August 2019 distributions of salinity,nutrients [nitrate(NO_(3)^(-)),nitrite,ammonium,and phosphate],and the stable isotopic composition of NO_(3)^(-)(δ^(15)N and δ^(18)O) were used to investigate sources of dissolved inorganic nitrogen(DIN) to Hangzhou B ay.Spatial distributions of nitrate,salinity,and nitrate δ^(18)O indicate that the Qiantang River,the Changjiang River,and nearshore coastal waters may all contribute nitrate to the bay.Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area,we suggest that the NO_(3)^(- )in Hangzhou B ay was likely derived mainly from soils,synthetic N fertilizer,and manure and sewage.End-member modeling indicates that in the upper half of the bay,the Qiantang River was a very important DIN source,possibly contributing more than 50% of DIN in the bay head area.In the lower half of the bay,DIN was sourced mainly from strongly intruding coastal water.DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.
基金The National Natural Science Foundation of China under contract Nos 41941013,41776205,41976226 and 41806228the Scientific Research Funds of Second Institute of Oceanography,Ministry of Natural Resources,under contract No.QNYC2003the Chinese Polar Environment Comprehensive Investigation&Assessment Programs under contract Nos 0304 and 0402.
文摘During the 3rd Chinese National Arctic Research Expedition cruise in the summer of 2008,nutrients(NO3^-,NO2^-,SiO3^2-,and PO4^3-)and dissolved oxygen were measured in the western Arctic Ocean,to derive the vertical distribution of nutrient tracers and its relationship to water structure and biogeochemical processes.The nutrient data show that surface waters had the lowest NO3^-/PO4^3-(mean of 0.5)and SiO3^2-/PO3^-(mean of 2.8)values in the water column,suggesting an excess of phosphate.Winter Bering Shelf water(wBSW)had high Si^*(16.7μmol/L;Si^*=[Si(OH)4]–[NO3^-])with negative N^*(−11.7μmol/L;N^*=[PO4^3-]−16[PO4^3-]+3.5μmol/L)in the water column,indicating nitrate deficiency.The warm Atlantic layer had positive N^*(0.8μmol/L)and negative Si^*(−5.4μmol/L)compared with Pacific source water.The vertical distribution of nutrients indicates that wBSW can be characterized by N^* minimum and Si^* maximum.In contrast,minima of Si^* and SiO3^2-/PO4^3- below 200 m indicate the distribution of Atlantic warm water.
基金supported by the National Natural Science Foundation of China(Grant Nos.41003036&41941013)the Chinese National Arctic Research Expedition Project(CHINARE)+1 种基金the Cai Yuanpei Programthe ICAR Project(China Scholarship Council)。
文摘The nutrient-rich Pacific Ocean seawater that flows through the Bering Strait into the Chukchi Sea is generally considered to be the most important source of nutrients to the Arctic euphotic zone.The inflow is characterized by nitrogen deficit and low nitrate/phosphate(N/P)ratios;this is ascribed to sedimentary denitrification on the Chukchi shelf by preoccupant opinions.However,the Chukchi Sea also has high primary production,which raises the question of whether the biological pump may also significantly modulate nutrient properties of the throughflow.Here,we show that nitrate concentrations of the Pacific inflow gradually decrease northward in association with notable biological utilization.The phytoplankton N/P uptake ratio was 8.8±2.27,higher than the N/P ratio of Pacific inflow water(5-6).This uptake ratio,in combination with efficient vertical nitrogen export,serves to preferentially remove nitrogen(relative to phosphorus)from upper waters,thereby further intensifying the Arctic nitrogen deficit.Accordingly,as large as about 111.7×10^(9)mol N yr^(−1)of nitrate was extra consumed,according to the real N/P uptake ratio rather than the ratio of the Pacific inflow,which may be as great as half the nitrogen loss ascribed to sedimentary denitrification.Our findings suggest that besides sedimentary denitrification,biological disproportionate utilization of nutrients in the Chukchi Sea upper water is another important contributor to the nitrogen limitation and excess phosphorus in the upper Arctic Ocean.In the rapid Arctic change era,the predicted reinforced biological carbon pump could further impact the nutrient dynamics and biogeochemical process of the Arctic Ocean.