We investigate gate-regulated transition temperatures for electron hopping behaviours through discrete ionized dopant atoms in silicon junctionless nanowire transistors.We demonstrate that the localization length of t...We investigate gate-regulated transition temperatures for electron hopping behaviours through discrete ionized dopant atoms in silicon junctionless nanowire transistors.We demonstrate that the localization length of the wave function in the spatial distribution is able to be manipulated by the gate electric field.The transition temperatures regulated as the function of the localization length and the density of states near the Fermi energy level allow us to understand the electron hopping behaviours under the influence of thermal activation energy and Coulomb interaction energy.This is useful for future quantum information processing by single dopant atoms in silicon.展开更多
基金supported by the National Key R&D Program of China(Grant No.2016YFA0200503)。
文摘We investigate gate-regulated transition temperatures for electron hopping behaviours through discrete ionized dopant atoms in silicon junctionless nanowire transistors.We demonstrate that the localization length of the wave function in the spatial distribution is able to be manipulated by the gate electric field.The transition temperatures regulated as the function of the localization length and the density of states near the Fermi energy level allow us to understand the electron hopping behaviours under the influence of thermal activation energy and Coulomb interaction energy.This is useful for future quantum information processing by single dopant atoms in silicon.