Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che...Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.展开更多
Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mech...Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction.Inspired by the innate biphasic structure of human subcutaneous tissue,this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding.Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation,and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young’s modulus(6.8-281.9 kPa)and high tensile properties(880%)compatible with human skin.The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties(peel strength>70 N m^(−1)).The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object,which greatly ensures the high fidelity and reliability of soft tactile sensing signals.This strategy,enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials,presents a universal platform for broad applications from soft robots to wearable electronics.展开更多
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based ...The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research.展开更多
As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved general...As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved generalized entropy and deep neural network(DNN).The initial detection is based on improved generalized entropy to filter out as much normal traffic as possible,thereby reducing data volume.Then the fine detection is based on DNN to perform precise DDoS detection on the filtered suspicious traffic,enhancing the neural network’s generalization capabilities.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method reaches 99.9%on low-rate DDoS(LDDoS),flooded DDoS and CICDDoS2019 datasets in terms of both accuracy and efficiency in identifying attack flows while reducing the time by 17%,31%and 8%.展开更多
Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity ...Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity of mass spectrometry(MS)with the spatial information of imaging.In this study,we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity.We optimized the air flow-assisted desorption electrospray ionization(AFADESI)-MSI platform to detect a wide range of metabolites,and then used matrix-assisted laser desorption ionization(MALDI)-MSI for increasing metabolic coverage and improving localization resolution.AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections,respectively,while MALDI-MSI detected 61 metabolites in negative analysis.Our study revealed the heterogenous metabolic profile of the heart in a DCM model,with over 105 region-specific changes in the levels of a wide range of metabolite classes,including carbohydrates,amino acids,nucleotides,and their derivatives,fatty acids,glycerol phospholipids,carnitines,and metal ions.The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model.Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.展开更多
Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue an...Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue and the tumor tissue,one effective approach to improve the efficacy of cancer chemotherapy is to develop pH-sensitive polymeric micellar delivery systems.The copolymers with reversible protonationedeprotonation core units or acid-liable bonds between the therapeutic agents and the micelle-forming copolymers can be used to form pH-sensitive polymeric micelles for extracellular and intracellular drug smart release.These systems can be triggered to release drug in response to the slightly acidic extracellular fluids of tumor tissue after accumulation in tumor tissues via the enhanced permeability and retention effect,or they can be triggered to release drug in endosomes or lysosomes by pH-controlled micelle hydrolysis or dissociation after uptake by cells via the endocytic pathway.The pH-sensitive micelles have been proved the specific tumor cell targeting,enhanced cellular internalization,rapid drug release,and multidrug resistance reversal.The multifunctional polymeric micelles combining extracellular pH-sensitivity with receptor-mediated active targeting strategies are of great interest for enhanced tumor targeting.The micelles with receptor-mediated and intracellular pH targeting functions are internalized via receptor-mediated endocytosis followed by endosomal-pH triggered drug release inside the cells,which reverses multidrug resistance.The pH sensitivity strategy of the polymeric micelles facilitates the specific drug delivery with reduced systemic side effects and improved chemotherapeutical efficacy,and is a novel promising platform for tumor-targeting drug delivery.展开更多
In order to deploy a secure WLAN mesh network,authentication of both users and APs is needed,and a secure authentication mechanism should be employed.However,some additional configurations of trusted third party agenc...In order to deploy a secure WLAN mesh network,authentication of both users and APs is needed,and a secure authentication mechanism should be employed.However,some additional configurations of trusted third party agencies are still needed on-site to deploy a secure authentication system.This paper proposes a new block chain-based authentication protocol for WLAN mesh security access,to reduce the deployment costs and resolve the issues of requiring key delivery and central server during IEEE 802.11X authentication.This method takes the user’s authentication request as a transaction,considers all the authentication records in the mesh network as the public ledger and realizes the effective monitoring of the malicious attack.Finally,this paper analyzes the security of the protocol in detail,and proves that the new method can solve the dependence of the authentication node on PKI and CA.展开更多
Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo- gram signals using nonli...Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo- gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran- scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula- tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula- tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag- netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangrning is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.展开更多
Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance deviation in the vehicle proof-of-concept stage,it is difficult to decompose performance tolerance to des...Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance deviation in the vehicle proof-of-concept stage,it is difficult to decompose performance tolerance to design parameter tolerance.This study proposes a set of consistency analysis methods for vehicle steering performance.The process of consistency analysis and control of automotive performance in the conceptual design phase is proposed for the first time.A vehicle dynamics model is constructed,and the multi-objective optimization software Isight is used to optimize the steering performance of the car.Sensitivity analysis is used to optimize the design performance value.The tolerance interval of the performance is obtained by comparing the original car performance value with the optimized value.With the help of layer-by-layer decomposition theory and interval mathematics,automotive performance tolerance has been decomposed into design parameter tolerance.Through simulation and real vehicle experiments,the validity of the consistency analysis and control method presented in this paper are verified.The decomposition from parameter tolerance to performance tolerance can be achieved at the conceptual design stage.展开更多
Naringenin(NAR)is recognized for its anti-inflammatory activity.However,the clinical application of NAR is limited by low bioavailability,which is attributed to its poor aqueous solubility.In this study,we aimed to im...Naringenin(NAR)is recognized for its anti-inflammatory activity.However,the clinical application of NAR is limited by low bioavailability,which is attributed to its poor aqueous solubility.In this study,we aimed to improve the therapeutic efficacy of NAR by formulating it into nanocrystals(NCs)via wet milling.The obtained NARNCs exhibited superior dissolution behaviors,increased cellular uptake,and enhanced transcellular diffusion relative to those of bulk NAR.Oral administration of NARNCs also significantly improved bioavailability in rats.In addition,the NARNCs effectively improved rheumatoid arthritis treatment in collagen-induced arthritic rats by reducing inflammatory cell infiltration and synovial damage.These results indicate that NARNCs provides a promising strategy for rheumatoid arthritis treatment.展开更多
Climate change has been considered as the most paramount global environmental problem and the biggest externality throughout the history of human development. Accordingly, the world is facing unprecedented technologic...Climate change has been considered as the most paramount global environmental problem and the biggest externality throughout the history of human development. Accordingly, the world is facing unprecedented technological innovation and collaborative demands to deal with climate change. In the 2015 Paris Agreement, a long-term vision of technology development and transfer implementation was proposed, and policy and financial support for technological innovation in the area of climate change was advocated. These terms aim to enable developing countries to acquire the necessary technology in the early stage of the technology cycle to address climate change challenge. However, the traditional technological innovation and cooperation mode based on industrial civilization can hardly meet the technical demands of global climate protection. To ensure the continuous development and deployment of technology in a required scale and pace, a new global technical cooperation system is proposed to develop based on the philosophy of ecological civilization. The core contents of this system are supposed be as follows:to implement all-win cooperation targets, adhering to cooperation principles of Eco-man, adopt cooperation content that reflects synergy, pursue cooperation based on mutual trust, encourage participation of multiple actors, and promote sharing of cooperative outputs.展开更多
At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to ana...At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to analyze hydraulic mounts for a rapid and accurate understanding of the influence of the different mounting parameters on the dynamic stiffness and loss angle.The aims of this study were to investigate the nonlinear dynamic characteristics of a hydraulic mount,and to identify the parameters that affect the dynamic stiffness and loss angle using MATLAB software programs to obtain the influence curves of the parameters,so as to use suitable parameters as the basis for vibration analysis.A nonlinear mechanical model of a hydraulic mount was established according to the basic principles of fluid dynamics.The dynamic stiffness and loss angle of the dimensionless expression were proposed.A numerical calculation method for the dynamic performance evaluation index of the hydraulic mount was derived.A one-to-one correspondence was established between the structural parameters and peak frequency of the evaluation index.The accuracy and applicability of the mechanical model were verified by the test results.The results demonstrated the accuracy of the nonlinear mechanical model of the hydraulic mount,and the vehicle driving comfort was greatly improved by the optimization of the structural parameters.展开更多
Energy service is an effective way to promote energy conservation by market mechanisms,including energy saving services,energy procurement,supply of many varieties of energy,supply of renewable energy technologies,ene...Energy service is an effective way to promote energy conservation by market mechanisms,including energy saving services,energy procurement,supply of many varieties of energy,supply of renewable energy technologies,energy-related consulting services,risk management,etc.China is a major energy consumer but energy is in short supply,and the efficiency of energy use is low.China's energy service industry has expanded rapidly,in terms of both the number of new Energy Service Companies entering the market and amount of capital invested in Energy Performance Contracting projects,but the energy service sector in China is still at an early stage of development.Developed countries began early in developing the energy service sector and their energy service market is mature,and the experience of developed countries shows that energy services play a significant role in advancing energy saving and emission reduction.Under the new situation,China needs combine energy services experience of developed countries,and take following measures to accelerate China's energy services rapid and healthy development,including the long-term aspects of policy planning,energy-saving core technology,finance and capital investment,public sector reductions,personnel training,and so on.展开更多
Currently,the problem of climate change is already far beyond the category of scientific research,and it affects the economic operation mode,interests pattern,and geographical relationships and becomes the focus of gl...Currently,the problem of climate change is already far beyond the category of scientific research,and it affects the economic operation mode,interests pattern,and geographical relationships and becomes the focus of global governance.During the transition period of the international economic and social development and the critical transformation period of the world geopolitical pattern reorganization,China's industrialization is still at the intermediate stage,and tackling with climate change is also China's internal demand under this development stage.With more influence of climate change on national competitiveness,climate change and geopolitics present complex multiple relations,and climate change in the era of geopolitical landscape gradually affected the national strategy and diplomacy.This article offered some relevant suggestions based on evaluating the new geopolitical characteristics of climate change:(1)weighing of interests and properly handling the complex relations among major powers during international climate negotiations;(2)strengthening risk judgments and actively cooperating with the United States and the European Union on energy and climate change;(3)relying on the"One Belt(Silk Road Economic Belt)and One Road(twenty-first century Maritime Silk Road)"to ensure China's energy security and actively participating in the global energy governance;(4)strengthening the"south-south cooperation"mechanism innovation and increasing the investment.展开更多
Agriculture is one of the most sensitive and fragile areas in regard to climate change,with direct or potentially indirect impacts on agricultural production and related processes;improving the ability of the agricult...Agriculture is one of the most sensitive and fragile areas in regard to climate change,with direct or potentially indirect impacts on agricultural production and related processes;improving the ability of the agricultural sector to adapt is the key measure of climate change.The primary impacts of climate change on the agricultural sector include increased annual average temperatures,resulting in a higher level of warming available for the production of agricultural resources extension of the growing season.Climate change will transform China's cropping systems and agricultural framework,resulting in the northwards extension of land suitable for agriculture.Climate change has impacts on crop yield and quality,as well as climate-related disasters such as droughts and floods,pests and diseases,food security,and agricultural trade.There are significant regional differences in the impact of climate change in agriculture because of China's vast land mass,and research into adaptation measures and strategy in agriculture has become an important aspect of climate change.Current major adaptation technologies include the following:adjusting agricultural cropping systems and layout,breeding good crop varieties,boosting agro-climatic disaster prevention and control,and enhancing the development of agricultural infrastructure.In this paper we analyze the problems for agriculture in adapting to climate change,including poor adoption of adaptation technology,unavailability of adaptation technologies,the lack of cost-benefit analysis of adaptation technologies,financial and policy barriers,and so on.A series of adaptation measures and strategies in the field of agriculture are proposed in this paper,including(1) reduction of systematic scientific uncertainty through research on the impacts of climate change;(2) promotion of agricultural status in the global climate change negotiations of the United Nations Framework Convention on Climate Change;(3) establishing a list of adaptation technologies and technology integration systems;and(4) establishing sound procedures and methods for the scientific selection and evaluation of adaptation technologies.Finally we must reduce the adverse effects of climate change by enhancing adaptive capacity and promoting the sustainable development capacity of agriculture in China.展开更多
Climate change strongly affected the structure and functions of natural ecosystems,e.g.the vegetation productivity decreased in the Northeast permafrost region due to the higher temperature and less precipitation,wher...Climate change strongly affected the structure and functions of natural ecosystems,e.g.the vegetation productivity decreased in the Northeast permafrost region due to the higher temperature and less precipitation,whereas in the Tibetan Plateau,the vegetation productivity increased,owing to the improved thermal resource.Climate change led to reduced precipitation in North and Northeast China and thus the reduced surface runoff.The public needs for energy were changed because of climate change,e.g.the shorter heating period in winter.Climate change profoundly influenced human health,pathophoresis and major projects by increasing extreme events,including frequency and magnitude,and causing more serious water shortage.Under the background of climate change,although the improved thermal resources can be helpful for extending the crop growth period,more extreme events may resulted in more instability in agricultural productivity.Not only did climate change indirectly affect the secondary and tertiary industries through the impacts on agriculture and natural resources,but also climate change mitigation measures,such as carbon tax,tariff and trading,had extensive and profound influences on the socioeconomic system.Further analysis indicated that the impact of climate change presented significant regional differences.The impact had its pros and cons,while the advantages outweighed the disadvantages.Based on the above analysis on the impacts of climate change,we put forward suggestions on coping with climate change.First,scientifically dealing with climate change will need to seek advantages while avoiding the disadvantages of climate change in order to achieve the orderly adaptation to climate change,which is characterized with"Overall best,long-term benefit."Second,quantitative adaptation should be given more attention,e.g.proposing operational schemes and predictable goals and using uncertainty analysis on adaptation measures.Third,more active coping strategy should be adopted to enhance China's future comprehensive competitiveness.The strategies include but are not limited to gradually adjusting the industrial structure,intensifying the research and development(R&D)of emission reduction technology and actively responding to the influence of carbon tax,tariff and trading on socioeconomic development in China.展开更多
The report of Chinese Communist Party's 18th National Congress clearly stated that the construction of ecological civilization needs to join hands with the overall layout of the construction of socialism with Chin...The report of Chinese Communist Party's 18th National Congress clearly stated that the construction of ecological civilization needs to join hands with the overall layout of the construction of socialism with Chinese characteristics,and the greatest obstacle to achieving ecological civilization is the energy structure in China.Currently,the third industrial revolution—marked by green technology and cloud computing technology—is happening,and it will have a huge impact on future energy development.The fundamental way to solve the problem of energy resource constraints is developing the renewable energy,and the fundamental approach for renewable energy is developing distributed energy and services.The important factors to achieving China's energy production and consumption revolution are accelerating the construction of distributed energy system and overall energy structure adjustment in China.展开更多
Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan'an Yangou watershed, we summarize the characteristics of...Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan'an Yangou watershed, we summarize the characteristics of eco-environment restoration pattern based on "building terrace and returning slope farmland to forests and grass". According to the data on land use, slope farmland and the agricultural population in 1999, we calculate the area of new terrace that needs to be built, the area of garden plot that needs to be extended, vegetation restoration area and investment demand in counties (cities, districts). Establishing and using some indicators, such as basic farmland extension indicator, garden plot extension indicator, vegetation restoration index and investment demand density, we conduct type classification and analysis of regional differentiation characteristics in 55 counties (cities, districts). The results show that in the Loess Hilly-gully Region, 691 600 hm2 of new terrace needs to be built, 792 000 hm2 of economic forests and orchards need to be extended, 5 410 200 hm2 of vegetation needs to be restored, and the total investment demand is 15.82 billion yuan; in terms of geographical distribution, obviously there are two key areas for eco-environment restoration (one is located in the border area between northern Shaanxi and northwestern Shanxi, and the other is located in the eastern Gansu and southern Ningxia area); the classified regional guidance policies should be formulated as soon as possible, and the limited funds should be concentrated in the key areas.展开更多
In this article,early warning analyses on agricultural industrial safety in Hunan Province from 2001 to 2013 are performed by constructing a four-indexed evaluation system and adopting the entropy weighted grey relati...In this article,early warning analyses on agricultural industrial safety in Hunan Province from 2001 to 2013 are performed by constructing a four-indexed evaluation system and adopting the entropy weighted grey relational analysis model.The results show that Hunan's agricultural industrial safety showed a good trend of transforming from"heavy warning"to"light warning";the early warning results of agricultural industrial productivity index and the overall index remained consistent and performed well;the agricultural industrial competitiveness index and dependence index changed frequently and fluctuated around"medium warning";and the control power index showed a deteriorating trend from"light warning"to"heavy warning".Therefore,support shall be increased continuously for the agricultural industry in terms of system construction,policy support and capital supply,and technological innovations and system innovations in the agricultural industry shall be promoted,especially for the improvement of the independent control of domestic capital,truly ensuring the efficiency,stability and safety of the agricultural industry development.展开更多
By constructing the index system of " four forces" and adopting the fuzzy comprehensive evaluation model under the new membership function,this paper makes an empirical analysis on the safety of agricultural...By constructing the index system of " four forces" and adopting the fuzzy comprehensive evaluation model under the new membership function,this paper makes an empirical analysis on the safety of agricultural industry in Hunan Province from 2001 to 2013. The results show that the safety degree of Hunan agricultural industry is always in the range of " basically safe" and above,it was in the range of " safe" in 2010 and 2011,in the range of " very safe" in 2013,and in the range of " basically safe" in the other years; the indices of productive force,competitiveness and dependency of agricultural industry is always in the state of " basically safe" or above,while the index of control force of agricultural industry is in the trend of changing from " basically safe" to " unsafe". Therefore,it is necessary to accelerate the innovation process of agricultural industry and improve the export quality of agricultural products,especially to establish a stricter market mechanism for foreign capital entry and foreign capital merger and acquisition,improve the control power of agricultural industry,and provide favorable guarantee for the safety of agricultural industry.展开更多
基金financially supported by Shanxi Province Natural Science Foundation of China(20210302123167)NSFC-Shanxi joint fund for coal-based low carbon(U1610223)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-TD006).
文摘Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.
基金supported by the National Natural Science Foundation of China(22278091)the Guangxi Natural Science Foundation of China(2023GXNSFFA026009)+1 种基金All the experiments with human research participants were approved by the Medical Ethics Committee of Guangxi University(GXU-2023-023)informed written consent was obtained from all participants.
文摘Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction.Inspired by the innate biphasic structure of human subcutaneous tissue,this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding.Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation,and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young’s modulus(6.8-281.9 kPa)and high tensile properties(880%)compatible with human skin.The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties(peel strength>70 N m^(−1)).The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object,which greatly ensures the high fidelity and reliability of soft tactile sensing signals.This strategy,enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials,presents a universal platform for broad applications from soft robots to wearable electronics.
基金supported by the National Natural Science Foundation of China(22068005,22278091)the Training Program for 1000 Backbone Teachers in Guangxi(2022).
文摘The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable,portable,and self-powered flexible sensing devices.Triboelectric nanogenerators(TENGs)based on gel materials(with excellent conductivity,mechanical tunability,environmental adaptability,and biocompatibility)are considered an advanced approach for developing a new generation of flexible sensors.This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors,covering their principles,properties,and applications.Based on the development requirements for flexible sensors,the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced.Design strategies for the performance optimization of hydrogel-,organogel-,and aerogel-based TENGs are systematically summarized.In addition,the applications of gel-based TENGs in human motion sensing,tactile sensing,health monitoring,environmental monitoring,human-machine interaction,and other related fields are summarized.Finally,the challenges of gel-based TENGs for flexible sensing are discussed,and feasible strategies are proposed to guide future research.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.U22B2005,62072109)the Natural Science Foundation of Fujian Province(Grant No.2021J01625)the Major Science and Technology Project of Fuzhou(Grant No.2023-ZD-003).
文摘As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly vital.We propose an intelligent detection model named IGED by using improved generalized entropy and deep neural network(DNN).The initial detection is based on improved generalized entropy to filter out as much normal traffic as possible,thereby reducing data volume.Then the fine detection is based on DNN to perform precise DDoS detection on the filtered suspicious traffic,enhancing the neural network’s generalization capabilities.Experimental results show that the proposed method can efficiently distinguish normal traffic from DDoS traffic.Compared with the benchmark methods,our method reaches 99.9%on low-rate DDoS(LDDoS),flooded DDoS and CICDDoS2019 datasets in terms of both accuracy and efficiency in identifying attack flows while reducing the time by 17%,31%and 8%.
基金supported by the National Natural Science Foundation of China(Grant Nos.:21927808 and 81803483).
文摘Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity of mass spectrometry(MS)with the spatial information of imaging.In this study,we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity.We optimized the air flow-assisted desorption electrospray ionization(AFADESI)-MSI platform to detect a wide range of metabolites,and then used matrix-assisted laser desorption ionization(MALDI)-MSI for increasing metabolic coverage and improving localization resolution.AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections,respectively,while MALDI-MSI detected 61 metabolites in negative analysis.Our study revealed the heterogenous metabolic profile of the heart in a DCM model,with over 105 region-specific changes in the levels of a wide range of metabolite classes,including carbohydrates,amino acids,nucleotides,and their derivatives,fatty acids,glycerol phospholipids,carnitines,and metal ions.The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model.Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.
基金This work was financially supported from the National Nature Science Foundation of China(NO.81360483)from the Nature Science Foundation of Ningxia(No.NZ12193).
文摘Most of the conventional chemotherapeutic agents used for cancer chemotherapy suffer from multidrug resistance of tumor cells and poor antitumor efficacy.Based on physiological differences between the normal tissue and the tumor tissue,one effective approach to improve the efficacy of cancer chemotherapy is to develop pH-sensitive polymeric micellar delivery systems.The copolymers with reversible protonationedeprotonation core units or acid-liable bonds between the therapeutic agents and the micelle-forming copolymers can be used to form pH-sensitive polymeric micelles for extracellular and intracellular drug smart release.These systems can be triggered to release drug in response to the slightly acidic extracellular fluids of tumor tissue after accumulation in tumor tissues via the enhanced permeability and retention effect,or they can be triggered to release drug in endosomes or lysosomes by pH-controlled micelle hydrolysis or dissociation after uptake by cells via the endocytic pathway.The pH-sensitive micelles have been proved the specific tumor cell targeting,enhanced cellular internalization,rapid drug release,and multidrug resistance reversal.The multifunctional polymeric micelles combining extracellular pH-sensitivity with receptor-mediated active targeting strategies are of great interest for enhanced tumor targeting.The micelles with receptor-mediated and intracellular pH targeting functions are internalized via receptor-mediated endocytosis followed by endosomal-pH triggered drug release inside the cells,which reverses multidrug resistance.The pH sensitivity strategy of the polymeric micelles facilitates the specific drug delivery with reduced systemic side effects and improved chemotherapeutical efficacy,and is a novel promising platform for tumor-targeting drug delivery.
文摘In order to deploy a secure WLAN mesh network,authentication of both users and APs is needed,and a secure authentication mechanism should be employed.However,some additional configurations of trusted third party agencies are still needed on-site to deploy a secure authentication system.This paper proposes a new block chain-based authentication protocol for WLAN mesh security access,to reduce the deployment costs and resolve the issues of requiring key delivery and central server during IEEE 802.11X authentication.This method takes the user’s authentication request as a transaction,considers all the authentication records in the mesh network as the public ledger and realizes the effective monitoring of the malicious attack.Finally,this paper analyzes the security of the protocol in detail,and proves that the new method can solve the dependence of the authentication node on PKI and CA.
基金supported by the National Natural Science Foundation of China,No.31100711,51377045,31300818the Natural Science Foundation of Hebei Province,No.H2013202176
文摘Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo- gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran- scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula- tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula- tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag- netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangrning is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.
文摘Given the global lack of effective analysis methods for the impact of design parameter tolerance on performance deviation in the vehicle proof-of-concept stage,it is difficult to decompose performance tolerance to design parameter tolerance.This study proposes a set of consistency analysis methods for vehicle steering performance.The process of consistency analysis and control of automotive performance in the conceptual design phase is proposed for the first time.A vehicle dynamics model is constructed,and the multi-objective optimization software Isight is used to optimize the steering performance of the car.Sensitivity analysis is used to optimize the design performance value.The tolerance interval of the performance is obtained by comparing the original car performance value with the optimized value.With the help of layer-by-layer decomposition theory and interval mathematics,automotive performance tolerance has been decomposed into design parameter tolerance.Through simulation and real vehicle experiments,the validity of the consistency analysis and control method presented in this paper are verified.The decomposition from parameter tolerance to performance tolerance can be achieved at the conceptual design stage.
基金supported by the National Natural Science Foundation of China(No.82173765)the Science Foundation for Outstanding Youth of Liaoning Province(2021-YQ08)+2 种基金Ningxia Key Research and Invention Program(No.2021BEG02039)Basic Research Projects of Liaoning Provincial Department of Education(2020LFW01)Beijing Postdoctoral Work Funding Project,and the Career Development Program for Young Teachers in Shenyang Pharmaceutical University(ZQN2019003).
文摘Naringenin(NAR)is recognized for its anti-inflammatory activity.However,the clinical application of NAR is limited by low bioavailability,which is attributed to its poor aqueous solubility.In this study,we aimed to improve the therapeutic efficacy of NAR by formulating it into nanocrystals(NCs)via wet milling.The obtained NARNCs exhibited superior dissolution behaviors,increased cellular uptake,and enhanced transcellular diffusion relative to those of bulk NAR.Oral administration of NARNCs also significantly improved bioavailability in rats.In addition,the NARNCs effectively improved rheumatoid arthritis treatment in collagen-induced arthritic rats by reducing inflammatory cell infiltration and synovial damage.These results indicate that NARNCs provides a promising strategy for rheumatoid arthritis treatment.
基金supported by special funds of Ministry of Science and Technologyby a ministerial research project of China Law Society(Grant Number:CLS(2016)Y21)
文摘Climate change has been considered as the most paramount global environmental problem and the biggest externality throughout the history of human development. Accordingly, the world is facing unprecedented technological innovation and collaborative demands to deal with climate change. In the 2015 Paris Agreement, a long-term vision of technology development and transfer implementation was proposed, and policy and financial support for technological innovation in the area of climate change was advocated. These terms aim to enable developing countries to acquire the necessary technology in the early stage of the technology cycle to address climate change challenge. However, the traditional technological innovation and cooperation mode based on industrial civilization can hardly meet the technical demands of global climate protection. To ensure the continuous development and deployment of technology in a required scale and pace, a new global technical cooperation system is proposed to develop based on the philosophy of ecological civilization. The core contents of this system are supposed be as follows:to implement all-win cooperation targets, adhering to cooperation principles of Eco-man, adopt cooperation content that reflects synergy, pursue cooperation based on mutual trust, encourage participation of multiple actors, and promote sharing of cooperative outputs.
文摘At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to analyze hydraulic mounts for a rapid and accurate understanding of the influence of the different mounting parameters on the dynamic stiffness and loss angle.The aims of this study were to investigate the nonlinear dynamic characteristics of a hydraulic mount,and to identify the parameters that affect the dynamic stiffness and loss angle using MATLAB software programs to obtain the influence curves of the parameters,so as to use suitable parameters as the basis for vibration analysis.A nonlinear mechanical model of a hydraulic mount was established according to the basic principles of fluid dynamics.The dynamic stiffness and loss angle of the dimensionless expression were proposed.A numerical calculation method for the dynamic performance evaluation index of the hydraulic mount was derived.A one-to-one correspondence was established between the structural parameters and peak frequency of the evaluation index.The accuracy and applicability of the mechanical model were verified by the test results.The results demonstrated the accuracy of the nonlinear mechanical model of the hydraulic mount,and the vehicle driving comfort was greatly improved by the optimization of the structural parameters.
基金supported by Chinese Clean Development Mechanism Fund [grant number 2013034]
文摘Energy service is an effective way to promote energy conservation by market mechanisms,including energy saving services,energy procurement,supply of many varieties of energy,supply of renewable energy technologies,energy-related consulting services,risk management,etc.China is a major energy consumer but energy is in short supply,and the efficiency of energy use is low.China's energy service industry has expanded rapidly,in terms of both the number of new Energy Service Companies entering the market and amount of capital invested in Energy Performance Contracting projects,but the energy service sector in China is still at an early stage of development.Developed countries began early in developing the energy service sector and their energy service market is mature,and the experience of developed countries shows that energy services play a significant role in advancing energy saving and emission reduction.Under the new situation,China needs combine energy services experience of developed countries,and take following measures to accelerate China's energy services rapid and healthy development,including the long-term aspects of policy planning,energy-saving core technology,finance and capital investment,public sector reductions,personnel training,and so on.
基金supported by Chinese Clean Development Mechanism Fund[grant number 2013034]
文摘Currently,the problem of climate change is already far beyond the category of scientific research,and it affects the economic operation mode,interests pattern,and geographical relationships and becomes the focus of global governance.During the transition period of the international economic and social development and the critical transformation period of the world geopolitical pattern reorganization,China's industrialization is still at the intermediate stage,and tackling with climate change is also China's internal demand under this development stage.With more influence of climate change on national competitiveness,climate change and geopolitics present complex multiple relations,and climate change in the era of geopolitical landscape gradually affected the national strategy and diplomacy.This article offered some relevant suggestions based on evaluating the new geopolitical characteristics of climate change:(1)weighing of interests and properly handling the complex relations among major powers during international climate negotiations;(2)strengthening risk judgments and actively cooperating with the United States and the European Union on energy and climate change;(3)relying on the"One Belt(Silk Road Economic Belt)and One Road(twenty-first century Maritime Silk Road)"to ensure China's energy security and actively participating in the global energy governance;(4)strengthening the"south-south cooperation"mechanism innovation and increasing the investment.
文摘Agriculture is one of the most sensitive and fragile areas in regard to climate change,with direct or potentially indirect impacts on agricultural production and related processes;improving the ability of the agricultural sector to adapt is the key measure of climate change.The primary impacts of climate change on the agricultural sector include increased annual average temperatures,resulting in a higher level of warming available for the production of agricultural resources extension of the growing season.Climate change will transform China's cropping systems and agricultural framework,resulting in the northwards extension of land suitable for agriculture.Climate change has impacts on crop yield and quality,as well as climate-related disasters such as droughts and floods,pests and diseases,food security,and agricultural trade.There are significant regional differences in the impact of climate change in agriculture because of China's vast land mass,and research into adaptation measures and strategy in agriculture has become an important aspect of climate change.Current major adaptation technologies include the following:adjusting agricultural cropping systems and layout,breeding good crop varieties,boosting agro-climatic disaster prevention and control,and enhancing the development of agricultural infrastructure.In this paper we analyze the problems for agriculture in adapting to climate change,including poor adoption of adaptation technology,unavailability of adaptation technologies,the lack of cost-benefit analysis of adaptation technologies,financial and policy barriers,and so on.A series of adaptation measures and strategies in the field of agriculture are proposed in this paper,including(1) reduction of systematic scientific uncertainty through research on the impacts of climate change;(2) promotion of agricultural status in the global climate change negotiations of the United Nations Framework Convention on Climate Change;(3) establishing a list of adaptation technologies and technology integration systems;and(4) establishing sound procedures and methods for the scientific selection and evaluation of adaptation technologies.Finally we must reduce the adverse effects of climate change by enhancing adaptive capacity and promoting the sustainable development capacity of agriculture in China.
基金supported by National Science and Technology Support Program of China "Research on Assessment Technology of Impact and Risk of Climate Change in Key Fields and ItsApplication"[grant number 2012BAC19B00]National Key Scientific Research Project "Impact and Adaptive Strategy of Social and Economic System to Climate Change"[grant number2012CB955700]+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences "Environmental Pattern Change and Impact in Past One Hundred Years"[grant numberXDA05090307]"Impact of International Trade Policy and Emissions Reduction Policy to China"[Grant numberXDA05150200]
文摘Climate change strongly affected the structure and functions of natural ecosystems,e.g.the vegetation productivity decreased in the Northeast permafrost region due to the higher temperature and less precipitation,whereas in the Tibetan Plateau,the vegetation productivity increased,owing to the improved thermal resource.Climate change led to reduced precipitation in North and Northeast China and thus the reduced surface runoff.The public needs for energy were changed because of climate change,e.g.the shorter heating period in winter.Climate change profoundly influenced human health,pathophoresis and major projects by increasing extreme events,including frequency and magnitude,and causing more serious water shortage.Under the background of climate change,although the improved thermal resources can be helpful for extending the crop growth period,more extreme events may resulted in more instability in agricultural productivity.Not only did climate change indirectly affect the secondary and tertiary industries through the impacts on agriculture and natural resources,but also climate change mitigation measures,such as carbon tax,tariff and trading,had extensive and profound influences on the socioeconomic system.Further analysis indicated that the impact of climate change presented significant regional differences.The impact had its pros and cons,while the advantages outweighed the disadvantages.Based on the above analysis on the impacts of climate change,we put forward suggestions on coping with climate change.First,scientifically dealing with climate change will need to seek advantages while avoiding the disadvantages of climate change in order to achieve the orderly adaptation to climate change,which is characterized with"Overall best,long-term benefit."Second,quantitative adaptation should be given more attention,e.g.proposing operational schemes and predictable goals and using uncertainty analysis on adaptation measures.Third,more active coping strategy should be adopted to enhance China's future comprehensive competitiveness.The strategies include but are not limited to gradually adjusting the industrial structure,intensifying the research and development(R&D)of emission reduction technology and actively responding to the influence of carbon tax,tariff and trading on socioeconomic development in China.
文摘The report of Chinese Communist Party's 18th National Congress clearly stated that the construction of ecological civilization needs to join hands with the overall layout of the construction of socialism with Chinese characteristics,and the greatest obstacle to achieving ecological civilization is the energy structure in China.Currently,the third industrial revolution—marked by green technology and cloud computing technology—is happening,and it will have a huge impact on future energy development.The fundamental way to solve the problem of energy resource constraints is developing the renewable energy,and the fundamental approach for renewable energy is developing distributed energy and services.The important factors to achieving China's energy production and consumption revolution are accelerating the construction of distributed energy system and overall energy structure adjustment in China.
基金Supported by National Natural Science Foundation Project (41171449)Key Project of Chinese Academy of Sciences (KZZD-EW-06-01)
文摘Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan'an Yangou watershed, we summarize the characteristics of eco-environment restoration pattern based on "building terrace and returning slope farmland to forests and grass". According to the data on land use, slope farmland and the agricultural population in 1999, we calculate the area of new terrace that needs to be built, the area of garden plot that needs to be extended, vegetation restoration area and investment demand in counties (cities, districts). Establishing and using some indicators, such as basic farmland extension indicator, garden plot extension indicator, vegetation restoration index and investment demand density, we conduct type classification and analysis of regional differentiation characteristics in 55 counties (cities, districts). The results show that in the Loess Hilly-gully Region, 691 600 hm2 of new terrace needs to be built, 792 000 hm2 of economic forests and orchards need to be extended, 5 410 200 hm2 of vegetation needs to be restored, and the total investment demand is 15.82 billion yuan; in terms of geographical distribution, obviously there are two key areas for eco-environment restoration (one is located in the border area between northern Shaanxi and northwestern Shanxi, and the other is located in the eastern Gansu and southern Ningxia area); the classified regional guidance policies should be formulated as soon as possible, and the limited funds should be concentrated in the key areas.
基金Project of Hunan Provincial Social Science Achievement Review Committee:Research on Agricultural Industrial Security Guarantee in Hunan Province(XSP20ZDI012).
文摘In this article,early warning analyses on agricultural industrial safety in Hunan Province from 2001 to 2013 are performed by constructing a four-indexed evaluation system and adopting the entropy weighted grey relational analysis model.The results show that Hunan's agricultural industrial safety showed a good trend of transforming from"heavy warning"to"light warning";the early warning results of agricultural industrial productivity index and the overall index remained consistent and performed well;the agricultural industrial competitiveness index and dependence index changed frequently and fluctuated around"medium warning";and the control power index showed a deteriorating trend from"light warning"to"heavy warning".Therefore,support shall be increased continuously for the agricultural industry in terms of system construction,policy support and capital supply,and technological innovations and system innovations in the agricultural industry shall be promoted,especially for the improvement of the independent control of domestic capital,truly ensuring the efficiency,stability and safety of the agricultural industry development.
基金Supported by Key Research and Development Plan of Hunan Science and Technology Program in 2015(2015ZK3030)
文摘By constructing the index system of " four forces" and adopting the fuzzy comprehensive evaluation model under the new membership function,this paper makes an empirical analysis on the safety of agricultural industry in Hunan Province from 2001 to 2013. The results show that the safety degree of Hunan agricultural industry is always in the range of " basically safe" and above,it was in the range of " safe" in 2010 and 2011,in the range of " very safe" in 2013,and in the range of " basically safe" in the other years; the indices of productive force,competitiveness and dependency of agricultural industry is always in the state of " basically safe" or above,while the index of control force of agricultural industry is in the trend of changing from " basically safe" to " unsafe". Therefore,it is necessary to accelerate the innovation process of agricultural industry and improve the export quality of agricultural products,especially to establish a stricter market mechanism for foreign capital entry and foreign capital merger and acquisition,improve the control power of agricultural industry,and provide favorable guarantee for the safety of agricultural industry.