<strong>Background:</strong> Extracorporeal membrane oxygenation (ECMO) is an effective adjuvant therapy for cardiopulmonary support during the period of lung transplantation (LTx). However, factors associ...<strong>Background:</strong> Extracorporeal membrane oxygenation (ECMO) is an effective adjuvant therapy for cardiopulmonary support during the period of lung transplantation (LTx). However, factors associated with the application of ECMO after LTx remain controversial. The purpose of this study is to clarify the risk factors of post-operative ECMO support and to evaluate the outcomes. <strong>Methods:</strong> It was a hospital, single-center, retrospective study. 266 patients underwent LTx supported by ECMO were included. According to whether or not the patients received continourly ECMO support after the surgery, the enrolled patients were further divided into intra-operative ECMO group (group I, 105 cases) and post-operative ECMO group (group P, 161 cases). The peri-operative data of the donors and recipients were collected. The independent risk factors associated with post-operative ECMO support during LTx were identified. The relationship between primary graft dysfunction (PGD)/post-operative survival and duration of ECMO support was also analyzed. <strong>Results:</strong> Prolonged donor ventilation ≥ 5 days, pre-operative recipient mechanical ventilation, bilateral lung transplantation (BLT), veno-venous (V-V) ECMO and PGD in recipient were independent risk factors for post-operative ECMO support. The risk of PGD and post-operative death increased along with the increase of ECMO bypass time, and the mortality risk in group P was 2.33 (95% confidence interval: 1.16 - 4.67) times as that in group I. <strong>Conclusions:</strong> Mechanical ventilation for donor ≥ 5 days, pre-operative mechanical ventilation, BLT, V-V-ECMO and PGD in recipient were independent risk factors for post-operative ECMO support after LTx, and post-operative ECMO could not reduce recipients’ hospital mortality.展开更多
Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for ...Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.展开更多
A new cerite group mineral species,taipingite-(Ce),ideally(Ce7^3+,Ca2)∑9Mg(SiO4)3[SiO3(OH)]4 F3,has been found in the Taipingzhen rare earth element(REE)deposit in the North Qinling Orogen(NQO),Central China.It forms...A new cerite group mineral species,taipingite-(Ce),ideally(Ce7^3+,Ca2)∑9Mg(SiO4)3[SiO3(OH)]4 F3,has been found in the Taipingzhen rare earth element(REE)deposit in the North Qinling Orogen(NQO),Central China.It forms subhedral grains(up to approximately 100 μm×200 μm)commonly intergrown with the REE mineral assemblages and is closely associated with allanite-(Ce),gatelite-(Ce),tornebohmite-(Ce),fluocerite-(Ce),fluocerite-(La),fluorite,bastnasite-(Ce),parisite-(Ce)and calcite.Taipingite-(Ce)is light red to pinkish brown under a binocular microscope and pale brown to colorless in thin section,and it is translucent to transparent with a grayish-white streak and vitreous luster.This mineral is brittle with conchoidal fracture;has a Mohs hardness value of approximately 51/2 and exhibits no cleavage twinning or parting.The calculated density is 4.900(5)g/cm3.Optically,taipingite-(Ce)is uniaxial(+),withω=1.808(5),ε=1.812(7),c=ε,and a=b=ω.Furthermore,this mineral is insoluble in HCl,HNO3 and H2 SO4.Electron microprobe analysis demonstrated that the sample was relatively pure,yielding the empirical formula(with calculated H2 O):(Ce4.02La1.64Nd1.49Pr0.41Sm0.10Gd0.02Ho0.02Tm0.01Lu0.02Y0.03Ca0.66Mg0.05Th(0.01-0.51∑9(Mg0.75Fe0.253+)∑1(SiO4)3{[SiO3(OH)]3.98[PO3(OH)]0.02}∑4(F1.81OH1.17Cl0.02∑3.Taipingite-(Ce)is trigonal and exhibits space group symmetry R3 c with unit cell parameters a=10.7246(3)Å,c=37.9528(14)Å,V=3780.39(20)Å3 and Z=6.The strongest eight lines in the X-ray diffraction pattern are[d in A(I)(hkl)]:4.518(50)(202),3.455(95)(122),3.297(85)(214),3.098(35)(300),2.941(100)(02,10),2.683(65)(220),1.945(40)(238)and 1.754(40)(30,18).The crystal structure has been refined to a R1 factor of 0.025,calculated for the 2312 unique observed reflections(Fo≥4σ).The mineral is named after its discovery locality and is characterized as the F-dominant analogue of cerite-(Ce).展开更多
The purpose of this study was to analyze the influence of the injection pressure and orifice diameter on the spray characteristics of soybean biodiesel.The macroscopic spray characteristics of the spray tip penetratio...The purpose of this study was to analyze the influence of the injection pressure and orifice diameter on the spray characteristics of soybean biodiesel.The macroscopic spray characteristics of the spray tip penetration(STP)and spray cone angle(SCA)were tested with a high-speed camera system.The microscopic spray characteristics,such as the statistical size distribution,Sauter mean diameter(SMD),representative diameters and dispersion boundary,were obtained using a Malvern laser particle size analyzer(PSA).The test results showed that with an increasing injection pressure,the STP and the SCA of the biodiesel increased,but the curves of size-volume distribution and cumulative volume distribution of the atomized droplets shifted to smaller diameters.The SMD and representative diameters decreased,and the dispersion boundary was reduced.Moreover,with a decreasing orifice diameter,longer STP and smaller SCA values were observed.Similarly,the size distribution curves of the atomized biodiesel droplets shifted to smaller diameters.The SMD and representative diameters were reduced,and the relative size range of the atomized biodiesel droplets was enlarged.Higher injection pressures and smaller orifice diameters improved the biodiesel atomization;however,the smaller orifice diameters caused an inhomogeneous size distribution of the atomized biodiesel droplets.展开更多
文摘<strong>Background:</strong> Extracorporeal membrane oxygenation (ECMO) is an effective adjuvant therapy for cardiopulmonary support during the period of lung transplantation (LTx). However, factors associated with the application of ECMO after LTx remain controversial. The purpose of this study is to clarify the risk factors of post-operative ECMO support and to evaluate the outcomes. <strong>Methods:</strong> It was a hospital, single-center, retrospective study. 266 patients underwent LTx supported by ECMO were included. According to whether or not the patients received continourly ECMO support after the surgery, the enrolled patients were further divided into intra-operative ECMO group (group I, 105 cases) and post-operative ECMO group (group P, 161 cases). The peri-operative data of the donors and recipients were collected. The independent risk factors associated with post-operative ECMO support during LTx were identified. The relationship between primary graft dysfunction (PGD)/post-operative survival and duration of ECMO support was also analyzed. <strong>Results:</strong> Prolonged donor ventilation ≥ 5 days, pre-operative recipient mechanical ventilation, bilateral lung transplantation (BLT), veno-venous (V-V) ECMO and PGD in recipient were independent risk factors for post-operative ECMO support. The risk of PGD and post-operative death increased along with the increase of ECMO bypass time, and the mortality risk in group P was 2.33 (95% confidence interval: 1.16 - 4.67) times as that in group I. <strong>Conclusions:</strong> Mechanical ventilation for donor ≥ 5 days, pre-operative mechanical ventilation, BLT, V-V-ECMO and PGD in recipient were independent risk factors for post-operative ECMO support after LTx, and post-operative ECMO could not reduce recipients’ hospital mortality.
基金supported by the Pilot Program of University of Liaoning Innovation and Education Reform~~
文摘Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.
基金financially supported by the National Natural Science Foundation of China(Grant No.41502033)the China Geological Survey(DD20160129-3,1212011120771,DD20190813)。
文摘A new cerite group mineral species,taipingite-(Ce),ideally(Ce7^3+,Ca2)∑9Mg(SiO4)3[SiO3(OH)]4 F3,has been found in the Taipingzhen rare earth element(REE)deposit in the North Qinling Orogen(NQO),Central China.It forms subhedral grains(up to approximately 100 μm×200 μm)commonly intergrown with the REE mineral assemblages and is closely associated with allanite-(Ce),gatelite-(Ce),tornebohmite-(Ce),fluocerite-(Ce),fluocerite-(La),fluorite,bastnasite-(Ce),parisite-(Ce)and calcite.Taipingite-(Ce)is light red to pinkish brown under a binocular microscope and pale brown to colorless in thin section,and it is translucent to transparent with a grayish-white streak and vitreous luster.This mineral is brittle with conchoidal fracture;has a Mohs hardness value of approximately 51/2 and exhibits no cleavage twinning or parting.The calculated density is 4.900(5)g/cm3.Optically,taipingite-(Ce)is uniaxial(+),withω=1.808(5),ε=1.812(7),c=ε,and a=b=ω.Furthermore,this mineral is insoluble in HCl,HNO3 and H2 SO4.Electron microprobe analysis demonstrated that the sample was relatively pure,yielding the empirical formula(with calculated H2 O):(Ce4.02La1.64Nd1.49Pr0.41Sm0.10Gd0.02Ho0.02Tm0.01Lu0.02Y0.03Ca0.66Mg0.05Th(0.01-0.51∑9(Mg0.75Fe0.253+)∑1(SiO4)3{[SiO3(OH)]3.98[PO3(OH)]0.02}∑4(F1.81OH1.17Cl0.02∑3.Taipingite-(Ce)is trigonal and exhibits space group symmetry R3 c with unit cell parameters a=10.7246(3)Å,c=37.9528(14)Å,V=3780.39(20)Å3 and Z=6.The strongest eight lines in the X-ray diffraction pattern are[d in A(I)(hkl)]:4.518(50)(202),3.455(95)(122),3.297(85)(214),3.098(35)(300),2.941(100)(02,10),2.683(65)(220),1.945(40)(238)and 1.754(40)(30,18).The crystal structure has been refined to a R1 factor of 0.025,calculated for the 2312 unique observed reflections(Fo≥4σ).The mineral is named after its discovery locality and is characterized as the F-dominant analogue of cerite-(Ce).
基金financially supported by the National Natural Science Foundation of China(51806020)the Youth Innovation Team of Shaanxi Universities(Energy Saving and New Energy Vehicles)the Special Funds for Basic Scientific Research of Central Colleges,Chang’an University(310822172203 and 300102228403)。
文摘The purpose of this study was to analyze the influence of the injection pressure and orifice diameter on the spray characteristics of soybean biodiesel.The macroscopic spray characteristics of the spray tip penetration(STP)and spray cone angle(SCA)were tested with a high-speed camera system.The microscopic spray characteristics,such as the statistical size distribution,Sauter mean diameter(SMD),representative diameters and dispersion boundary,were obtained using a Malvern laser particle size analyzer(PSA).The test results showed that with an increasing injection pressure,the STP and the SCA of the biodiesel increased,but the curves of size-volume distribution and cumulative volume distribution of the atomized droplets shifted to smaller diameters.The SMD and representative diameters decreased,and the dispersion boundary was reduced.Moreover,with a decreasing orifice diameter,longer STP and smaller SCA values were observed.Similarly,the size distribution curves of the atomized biodiesel droplets shifted to smaller diameters.The SMD and representative diameters were reduced,and the relative size range of the atomized biodiesel droplets was enlarged.Higher injection pressures and smaller orifice diameters improved the biodiesel atomization;however,the smaller orifice diameters caused an inhomogeneous size distribution of the atomized biodiesel droplets.