As the integration point of urban blue-green spaces,wetland parks play an important role in the construction of urban carbon pools.It is of great significance for achieving carbon neutrality and peak carbon emissions ...As the integration point of urban blue-green spaces,wetland parks play an important role in the construction of urban carbon pools.It is of great significance for achieving carbon neutrality and peak carbon emissions by reasonably evaluating the carbon sequestration capacity of wetland parks and optimizing wetland structure.In this paper,Guangzhou wetland park is taken as the research object.Through field research,the carbon sequestration potential of ecosystems at multiple levels,including forest vegetation,seedlings,and wetland ecosystems is studied,and policy recommendations are put forward for carbon sequestration in wetland systems.The results show that the annual carbon sequestration capacity of the wetland is 1296.59 t,and the annual net carbon sequestration value is 100485 yuan.Among the three regions,proportions of annual carbon sequestration of the forest vegetation plate,seedling plate,and wetland ecosystem plate account for 28.4%,41.3%,and 30.3%,respectively.展开更多
The intricate anatomy and physiology of cranial nerves have inspired clinicians and scientists to study their roles in the nervous system. Damage to motor cranial nerves may result from a variety of organic or iatroge...The intricate anatomy and physiology of cranial nerves have inspired clinicians and scientists to study their roles in the nervous system. Damage to motor cranial nerves may result from a variety of organic or iatrogenic insults and causes devastating functional impairment and disfigurement. Surgical innovations directed towards restoring function to injured motor cranial nerves and their associated organs have evolved to include nerve repair, grafting, substitution, and muscle transposition. In parallel with this progress, research on tissue-engineered constructs, development of bioelectrical interfaces, and modulation of the regenerative milieu through cellular, immunomodulatory, or neurotrophic mechanisms has proliferated to enhance the available repertoire of clinically applicable reconstructive options. Despite these advances, patients continue to suffer from functional limitations relating to inadequate cranial nerve regeneration, aberrant reinnervation, or incomplete recovery of neuromuscular function. These shortfalls have profound quality of life ramifications and provide an impetus to further elucidate mechanisms underlying cranial nerve denervation and to improve repair. In this review, we summarize the literature on reconstruction and regeneration of motor cranial nerves following various injury patterns. We focus on seven cranial nerves with predominantly efferent functions and highlight shared patterns of injuries and clinical manifestations. We also present an overview of the existing reconstructive approaches, from facial reanimation, laryngeal reinnervation, to variations of interposition nerve grafts for reconstruction. We discuss ongoing endeavors to promote nerve regeneration and to suppress aberrant reinnervation and the development of synkinesis. Insights from these studies will shed light on recent progress and new horizons in understanding the biomechanics of peripheral nerve neurobiology, with emphasis on promising strategies for optimizing neural regeneration and identifying future directions in the field of motor cranial neuron research.展开更多
Scots pine(Pinus sylvestris L.) panels were modified with glutaraldehyde(GA) to various weight percent gains and subsequently coated with several commercial coatings. The drying rate and adhesion of the coatings on th...Scots pine(Pinus sylvestris L.) panels were modified with glutaraldehyde(GA) to various weight percent gains and subsequently coated with several commercial coatings. The drying rate and adhesion of the coatings on the modified wood were measured; the coated/modified woods were exposed outdoors to analyze how the wood modifications influence the coating deterioration. The results showed that GA modification caused an increase in the drying rate of the waterborne coatings, but had no influence on drying of tested solvent-borne coatings. GAmodification did not change the dry adhesion but reduced the wood strength in a pull-off test. Wet adhesion of waterborne coatings was improved, while that of the solvent-borne coatings tended to be somewhat reduced. During 22 months of outdoor weathering, the coated/modified samples exhibited lower moisture content than the coated/unmodified samples, but GA modification didn't contribute a substantially synergistic effect with surface coatings on resistance to weathering.展开更多
To develop an objective standard for defining binary tropical cyclones(BTCs)in the western North Pacific(WNP),two best-track datasets,from the China Meteorological Administration and the Joint Typhoon Warning Center,w...To develop an objective standard for defining binary tropical cyclones(BTCs)in the western North Pacific(WNP),two best-track datasets,from the China Meteorological Administration and the Joint Typhoon Warning Center,were adopted for statistical analyses on two important characteristics of BTCs-two TCs approaching each other,and counterclockwise spinning.Based on the high consistency between the two datasets,we established an objective standard,which includes a main standard for defining BTCs and a secondary standard for identifying typical/atypical BTCs.The main standard includes two requirements:two coexisting TCs are a pair of BTCs if(i)the separation distance is≤1800 km,and(ii)this separation maintains for at least 12 h.Meanwhile,the secondary standard defines a typical BTC as one for which there is at least one observation when the two TCs approach each other and spin counterclockwise simultaneously.Under the standard,the ratio of typical BTCs increases as the BTC duration increases or the minimum distance between the two TCs decreases.Then,using the JTWC dataset,it was found that there are 505 pairs of BTCs during the period 1951−2014,including 328 typical BTCs and 177 atypical BTCs,accounting for 65.0%and 35.0%of the total,respectively.In addition,a study of two extreme phenomena-the maximum approaching speed and the maximum counterclockwise angular velocity in typical BTCs-shows that the configuration of the circulation conditions and the distribution of the BTCs favor the formation of these extreme phenomena.展开更多
Objective We aimed to evaluate the expression pattern of the genes BIM, BCL-6, and c-MYC in adult patients at initial diagnosis of B-cell acute lymphoblastic leukemia(B-ALL).Methods Relative m RNA levels of BIM, BCL-6...Objective We aimed to evaluate the expression pattern of the genes BIM, BCL-6, and c-MYC in adult patients at initial diagnosis of B-cell acute lymphoblastic leukemia(B-ALL).Methods Relative m RNA levels of BIM, BCL-6, and c-MYC in peripheral blood mononuclear cells(PBMCs) from B-ALL patients were determined by quantitative reverse-transcription polymerase chain reaction(q RT-PCR) using SYBR Green dye. PBMCs from healthy volunteers served as a control. GAPDH was used as a reference gene.Results Relative expression of BIM, BCL-6, and c-MYC m RNA in B-ALL patients was significantly lower than in healthy controls(P < 0.05). Furthermore, this result was observed for both newly diagnosed B-ALL patients and those incomplete remission(CR)(P < 0.05). There were no statistically significant differences in the expression levels of BIM, BCL-6, and c-MYC between these B-ALL patient groups(P > 0.05). Spearman's rank correlation analyses revealed the expression level of BIM to be positively correlated with that of BCL-6 in B-ALL patients.Conclusion Expression of the genes BIM, BCL-6, and c-MYC is decreased in adult B-ALL patients. Moreover, the expression pattern of these genes may be similar in such patients at initial diagnosis and following CR. The expression characteristics of BIM, BCL-6, and c-MYC may constitute useful markers for the diagnosis of adult B-ALL.展开更多
Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development.However,the insufficient mechanical properties and complex manuf...Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development.However,the insufficient mechanical properties and complex manufacturing process of bioplastics still need to be improved for high-quality food packages.Herein,we report a top-down strategy to transform natural wood into a clear wood packaging film through scalable delignification and polyvinyl alcohol(PVA)infiltration.The wood packaging film demonstrates a laminated structure with completely collapsed cell walls and PVA intertwined together after energy-saving air drying,resulting in high light transmittance with low haze,good mechanical performance,and high barrier performance for oxygen and water vapor.Molecular dynamics simulations reveal the underlying fracture mechanism between cellulose and PVA,which effectively enhances the Young’s modulus and strength of the wood packaging film.These findings contribute to the development of biodegradable and strong packaging materials,as well as other food-related applications,using sustainable wood.展开更多
Phase change materials are potential candidates for the application of latent heat storage.Herein,we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex,which were first p...Phase change materials are potential candidates for the application of latent heat storage.Herein,we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex,which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method.Furthermore,the multi-walled carbon nanotube or graphene oxide,which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency.These capsules owned a typical core–shell structure,with an extremely high polyethylene glycol loading up to 34.33 g∙g^(‒1).After loading of polyethylene glycol,the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g^(‒1),which was 98.5%of pure polyethylene glycol.Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability.Moreover,studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance.Considering their exceptional comprehensive features,innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.展开更多
文摘As the integration point of urban blue-green spaces,wetland parks play an important role in the construction of urban carbon pools.It is of great significance for achieving carbon neutrality and peak carbon emissions by reasonably evaluating the carbon sequestration capacity of wetland parks and optimizing wetland structure.In this paper,Guangzhou wetland park is taken as the research object.Through field research,the carbon sequestration potential of ecosystems at multiple levels,including forest vegetation,seedlings,and wetland ecosystems is studied,and policy recommendations are put forward for carbon sequestration in wetland systems.The results show that the annual carbon sequestration capacity of the wetland is 1296.59 t,and the annual net carbon sequestration value is 100485 yuan.Among the three regions,proportions of annual carbon sequestration of the forest vegetation plate,seedling plate,and wetland ecosystem plate account for 28.4%,41.3%,and 30.3%,respectively.
基金supported by the United States National Institute of Health grant 1K08DC012535(to MJB)Program for Neurology Research and Discoverythe Sinai Medical Staff Foundation Neuroscience Scholar Fund(to ELF)
文摘The intricate anatomy and physiology of cranial nerves have inspired clinicians and scientists to study their roles in the nervous system. Damage to motor cranial nerves may result from a variety of organic or iatrogenic insults and causes devastating functional impairment and disfigurement. Surgical innovations directed towards restoring function to injured motor cranial nerves and their associated organs have evolved to include nerve repair, grafting, substitution, and muscle transposition. In parallel with this progress, research on tissue-engineered constructs, development of bioelectrical interfaces, and modulation of the regenerative milieu through cellular, immunomodulatory, or neurotrophic mechanisms has proliferated to enhance the available repertoire of clinically applicable reconstructive options. Despite these advances, patients continue to suffer from functional limitations relating to inadequate cranial nerve regeneration, aberrant reinnervation, or incomplete recovery of neuromuscular function. These shortfalls have profound quality of life ramifications and provide an impetus to further elucidate mechanisms underlying cranial nerve denervation and to improve repair. In this review, we summarize the literature on reconstruction and regeneration of motor cranial nerves following various injury patterns. We focus on seven cranial nerves with predominantly efferent functions and highlight shared patterns of injuries and clinical manifestations. We also present an overview of the existing reconstructive approaches, from facial reanimation, laryngeal reinnervation, to variations of interposition nerve grafts for reconstruction. We discuss ongoing endeavors to promote nerve regeneration and to suppress aberrant reinnervation and the development of synkinesis. Insights from these studies will shed light on recent progress and new horizons in understanding the biomechanics of peripheral nerve neurobiology, with emphasis on promising strategies for optimizing neural regeneration and identifying future directions in the field of motor cranial neuron research.
基金supported by the National Natural Science Foundation of China(31500469 and 31470585)the Natural Science Foundation of Heilongjiang Province,China(JC2015006)
文摘Scots pine(Pinus sylvestris L.) panels were modified with glutaraldehyde(GA) to various weight percent gains and subsequently coated with several commercial coatings. The drying rate and adhesion of the coatings on the modified wood were measured; the coated/modified woods were exposed outdoors to analyze how the wood modifications influence the coating deterioration. The results showed that GA modification caused an increase in the drying rate of the waterborne coatings, but had no influence on drying of tested solvent-borne coatings. GAmodification did not change the dry adhesion but reduced the wood strength in a pull-off test. Wet adhesion of waterborne coatings was improved, while that of the solvent-borne coatings tended to be somewhat reduced. During 22 months of outdoor weathering, the coated/modified samples exhibited lower moisture content than the coated/unmodified samples, but GA modification didn't contribute a substantially synergistic effect with surface coatings on resistance to weathering.
基金the National Natural Science Foundation of China(Grant No.41675042)the Jiangsu Collaborative Innovation Center for Climate Change.
文摘To develop an objective standard for defining binary tropical cyclones(BTCs)in the western North Pacific(WNP),two best-track datasets,from the China Meteorological Administration and the Joint Typhoon Warning Center,were adopted for statistical analyses on two important characteristics of BTCs-two TCs approaching each other,and counterclockwise spinning.Based on the high consistency between the two datasets,we established an objective standard,which includes a main standard for defining BTCs and a secondary standard for identifying typical/atypical BTCs.The main standard includes two requirements:two coexisting TCs are a pair of BTCs if(i)the separation distance is≤1800 km,and(ii)this separation maintains for at least 12 h.Meanwhile,the secondary standard defines a typical BTC as one for which there is at least one observation when the two TCs approach each other and spin counterclockwise simultaneously.Under the standard,the ratio of typical BTCs increases as the BTC duration increases or the minimum distance between the two TCs decreases.Then,using the JTWC dataset,it was found that there are 505 pairs of BTCs during the period 1951−2014,including 328 typical BTCs and 177 atypical BTCs,accounting for 65.0%and 35.0%of the total,respectively.In addition,a study of two extreme phenomena-the maximum approaching speed and the maximum counterclockwise angular velocity in typical BTCs-shows that the configuration of the circulation conditions and the distribution of the BTCs favor the formation of these extreme phenomena.
基金Supported by the gants of the Guangdong Province Key Foundation of Science and Technology Program(No.2009B0507000029)the Major Research Plan of the National Natural Science Foundation of China(cultivating project,No.91129720)+1 种基金the Guangdong Science&Technology Project(Nos.2012B050600023 and 2015A050502029)a Grant from the Overseas Chinese Affairs Office of the State Council Key Discipline Construction Fund(No.51205002)
文摘Objective We aimed to evaluate the expression pattern of the genes BIM, BCL-6, and c-MYC in adult patients at initial diagnosis of B-cell acute lymphoblastic leukemia(B-ALL).Methods Relative m RNA levels of BIM, BCL-6, and c-MYC in peripheral blood mononuclear cells(PBMCs) from B-ALL patients were determined by quantitative reverse-transcription polymerase chain reaction(q RT-PCR) using SYBR Green dye. PBMCs from healthy volunteers served as a control. GAPDH was used as a reference gene.Results Relative expression of BIM, BCL-6, and c-MYC m RNA in B-ALL patients was significantly lower than in healthy controls(P < 0.05). Furthermore, this result was observed for both newly diagnosed B-ALL patients and those incomplete remission(CR)(P < 0.05). There were no statistically significant differences in the expression levels of BIM, BCL-6, and c-MYC between these B-ALL patient groups(P > 0.05). Spearman's rank correlation analyses revealed the expression level of BIM to be positively correlated with that of BCL-6 in B-ALL patients.Conclusion Expression of the genes BIM, BCL-6, and c-MYC is decreased in adult B-ALL patients. Moreover, the expression pattern of these genes may be similar in such patients at initial diagnosis and following CR. The expression characteristics of BIM, BCL-6, and c-MYC may constitute useful markers for the diagnosis of adult B-ALL.
基金the support of the National Natural Science Foundation of China(No.32371790)the Fundamental Research Funds for the Central Universities(Nos.2572024AW61 and 2572023CT07)+4 种基金the National Key R&D Program of China(No.2023YFD2201404)China Postdoctoral Science Foundation(No.2020M681067)Special Funding Project of Postdoctoral in Heilongjiang Province(No.LBH-TZ2001)the National Natural Science Foundation of China(No.12302143)the National Key Research and Development Program of China(No.2023YFC3806300).
文摘Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development.However,the insufficient mechanical properties and complex manufacturing process of bioplastics still need to be improved for high-quality food packages.Herein,we report a top-down strategy to transform natural wood into a clear wood packaging film through scalable delignification and polyvinyl alcohol(PVA)infiltration.The wood packaging film demonstrates a laminated structure with completely collapsed cell walls and PVA intertwined together after energy-saving air drying,resulting in high light transmittance with low haze,good mechanical performance,and high barrier performance for oxygen and water vapor.Molecular dynamics simulations reveal the underlying fracture mechanism between cellulose and PVA,which effectively enhances the Young’s modulus and strength of the wood packaging film.These findings contribute to the development of biodegradable and strong packaging materials,as well as other food-related applications,using sustainable wood.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.31890774 and 31890770)the Fundamental Research Funds for the Central Universities(Grant No.2572018AB40)the National Training Program of Innovation and Entrepreneurship for Undergraduates of Northeast Forestry University(Grant No.202110225432).
文摘Phase change materials are potential candidates for the application of latent heat storage.Herein,we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex,which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method.Furthermore,the multi-walled carbon nanotube or graphene oxide,which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency.These capsules owned a typical core–shell structure,with an extremely high polyethylene glycol loading up to 34.33 g∙g^(‒1).After loading of polyethylene glycol,the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g^(‒1),which was 98.5%of pure polyethylene glycol.Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability.Moreover,studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance.Considering their exceptional comprehensive features,innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.