Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati...Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
Drought is one of the primary abiotic stress factors affecting the yield,growth,and development of soybeans.In extreme cases,drought can reduce yield by more than 50%.The seedling stage is an important determinant of ...Drought is one of the primary abiotic stress factors affecting the yield,growth,and development of soybeans.In extreme cases,drought can reduce yield by more than 50%.The seedling stage is an important determinant of soybean growth:the number and vigor of seedlings will affect growth and yield at harvest.Therefore,it is important to study the drought resistance of soybean seedlings.In this study,a recombinant inbred line(RIL)population comprising 234 F_(6:10)lines(derived from Zhonghuang35×Jindou 21)and a panel of 259 soybean accessions was subjected to drought conditions to identify the effects on phenotypic traits under these conditions.Using a genetic map constructed by single nucleotide polymorphism(SNPs)markers,18 quantitative trait loci(QTL)on 7 soybean chromosomes were identified in two environments.This included 9 QTL clusters identified in the RIL population.Fifty-three QTL were identified in 19 soybean chromosomes by genome-wide association analysis(GWAS)in the panel of accessions,including 69 significant SNPs(-log_(10)(P)≥3.97).A combination of the two populations revealed that two SNPs(-log_(10)(P)≥3.0)fell within two of the QTL(qPH7-4 and qPH7-6)confidence intervals.We not only re-located several previously reported drought-resistance genes in soybean and other crops but also identified several non-synonymous stress-related mutation site differences between the two parents,involving Glyma.07 g093000,Glyma.07 g093200,Glyma.07 g094100 and Glyma.07 g094200.One previously unreported new gene related to drought stress,Glyma.07 g094200,was found by regional association analysis.The significant SNP CHR7-17619(G/T)was within an exon of the Glyma.07 g094200 gene.In the RIL population,the DSP value of the"T"allele of CHR7-17619 was significantly(P<0.05)larger than the"G"allele in different environments.The results of our study lay the groundwork for cloning and molecular marker-assisted selection of droughtresistance genes in soybeans at the seedling stage.展开更多
Over the last few decades,waterlogging stress has increasingly threatened global cotton production.Waterlogging results in reduced soil oxygen,impairing the growth and development of this valuable crop and often resul...Over the last few decades,waterlogging stress has increasingly threatened global cotton production.Waterlogging results in reduced soil oxygen,impairing the growth and development of this valuable crop and often resulting in severe yield loss or crop failure.However,as cotton has an indeterminate growth habit,it is able to adapt to waterlogging stress by activating three mechanisms:the escape,quiescence,and self-regulating compensation mechanisms.The escape mechanism includes accelerated growth,formation of adventitious roots,and production of aerenchyma.The quiescence mechanism involves reduced biomass accumulation and energy dissipation via physiological,biochemical,and molecular events.The self-regulation compensation mechanism allows plants to exploit their indeterminate growth habit and compensatory growth ability by accelerating growth and development following relief from waterlogging stress.We review how the growth and development of cotton is impaired by waterlogging,focusing on the three strategies associated with tolerance and adaptation to the stress.We discuss agronomic measures and prospects for mitigating the adverse effects of waterlogging stress.展开更多
To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the suffic...To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical.展开更多
Vacuolar Phosphate Transporter1(VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening.Interestingly,here we find that the VPT1 may transport sugar in response to soluble ...Vacuolar Phosphate Transporter1(VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening.Interestingly,here we find that the VPT1 may transport sugar in response to soluble sugar status of fruits.The VvVPT1 protein isolated from grape(Vitis vinifera)berrieswas tonoplast-localized and contains SPX(Syg1/Pho81/XPR1)and MFS(major facilitator superfamily)domains.Its mRNA expression was significantly increased during fruit ripening and induced by sucrose.Functional analyses based on transient transgenic systems in grape berry showed that VvVPT1 positively regulated berry ripening and significantly affected hexose contents,fruit firmness,and ripening-related gene expression.The VPT1 proteins(Grape VvVPT1,strawberry FaVPT1,and Arabidopsis AtVPT1)all showed low affinity for phosphate verified in yeast system,while they appear different in sugar transport capacity,consistent with fruit sugar status.Thus,our findings reveal a role for VPT1 in fruit ripening,associated to its SPX and MFS domains in direct transport of soluble sugar available into the vacuole,and open potential avenues for genetic improvement in fleshy fruit.展开更多
OBJECTIVE The objective of this study was to explore the effect of CDA-2, a selective inhibitor of abnormal methylation enzymes in cancer cells, on the therapeutic efficacy of cytotoxic chemotherapy. METHODS Advanced ...OBJECTIVE The objective of this study was to explore the effect of CDA-2, a selective inhibitor of abnormal methylation enzymes in cancer cells, on the therapeutic efficacy of cytotoxic chemotherapy. METHODS Advanced cancer patients, all of whom had previously undergone chemotherapy, were randomly divided into 2 groups, one receiving chemotherapy only as the control group, and the other receiving CDA-2 in addition to chemotherapy as the combination group. The therapeutic efficacies and the toxic maniestations of the 2 groups were compared based on the WHO criteria. RESULTS Of 454 cancer patients enrolled in phase Ⅲ clinical trials of CDA-2, 80, 188, and 186 were breast cancer, NSCLC, and primary hepatoma patients, respectively. Among them 378 patients completed treatments according to the protocols. The results showed that the overall effective rate of the combination group was 2.6 fold that of the control group, 4.8 fold in the case of breast cancer, 2.3 fold in the case of primary hepatoma, and 2.2 fold in the case of NSCLC. Surprisingly, the combination therapy appeared to work better for stage Ⅳ than stage Ⅲ patients. CDA-2 did not contribute additional toxicity. On the contrary, it reduced toxic manifestations of chemotherapy, particularly regarding white blood cells, nausea and vomiting. CONCLUSION Modulation of abnormal methylation enzymes by CDA-2 is definitely helpful to supplement chemotherapy. It significantly increased the therapeutic efficacy and reduced the toxic manifestation of cytotoxic chemotherapy on breast cancer and NSCLC.展开更多
The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost an...The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost and low energy consumption. It has vast application foreground in the field of aviation, spaceflight, high speed train and etc. The internal thread processing and anti-fatigue manufacture technology are summarized. In terms of the perspective of processing quality and fatigue serving life, the advantages and disadvantages of the processing methods from are compared. The internal thread cold-extrusion processing technology is investigated for the purpose of improving the anti-fatigue serving life of internal thread. The superiorities of the plastic deformation law and surface integrity of the metal layer in the course of cold extrusion for improving its stability and economy are summed up. The proposed research forecasts the develop- ment tendency of the internal thread anti-fatigue manufacturing technology.展开更多
In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of ...In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.展开更多
In the adenine-induced renal failure rats, reversibility of renal failure and recovery of bone mineral density (BMD) by discontinuation of adenine-rich diet were reported: We think that the effect to bone metabolism w...In the adenine-induced renal failure rats, reversibility of renal failure and recovery of bone mineral density (BMD) by discontinuation of adenine-rich diet were reported: We think that the effect to bone metabolism with medication may be able to be evaluated as reinforcement of the BMD recovery. We have so far investigated the Chinese herbal medicine based on Hachimi-jio-gan (HJG) which are more effective than HJG alone. In this study, we investigated the effects of our Chinese herbal prescription on BMD in the adenine-treated rats compared to that of vitamin D3treatment. Young male rats were administrated 100 mg/ml adenine for 8 weeks, and they showed renal failure and bone loss. The adenine-treated rats were divided into the following 3 groups, that is, the group experienced no treatment (control), the group givenour Chinese herbal medicine (HAO), and the group given vitamin D3 (VD3) medication. It is likely that VD3 medication was less effective for increase of the femoral BMD than increase of the spinal BMD. In contrast, HAO was effective for increase of the femoral BMD. The VD3 group showed low deoxypyridinoline (Dpd: bone resorption maker) as compared to the control group.However, the HAO group showed same or slightly high Dpd. It is suggested that VD3 may increase BMD by reduction of bone resorption, while HAO may show effect on BMD by activating bone metabolism. It is indicated that HAO may become a curative medicine for bone loss because of the different target site from vitamin D3.展开更多
Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Sour...Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Source Heat Pump System (GSHPS). The authors presented a new concept of "flow transfixion" by analyzing general features of aquifers, and then discussed interaction of the flow transfixion with the beat transfixion, which has practical significance to projects. A numerical model of groundwater flow was established based on the basic tenets of water-heat transferring in the aquifer. On this basis the flow field and the temperature field of GSHPS for a site in Shenyang City were numerically simulated. The basis of the flow transfixion was obtained; it was discussed for the influence of the flow transfixion on the heat transfixion. To a certain extent, the study offers some reference for the projects' design of GSHP in the studied area.展开更多
In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal di...In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal dimension of the global attractors of this problem is finite.展开更多
Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride...Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4).展开更多
The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the mult...The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality.展开更多
Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effecti...Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.展开更多
Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more ex...Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.展开更多
The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulatio...The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulation is an important measure in research of complex power grid. With the development of full dynamic simulation technology, the research of dynamic voltage stability by using full dynamic simulation program which is based on time-domain simulation can be carried out. This paper uses full dynamic simulation program in dynamic voltage stability research, lays special stress on research in how generator over-excitation limiter functioned and influence in dynamic voltage stability research, and raise 2 methods and steps to figure out dynamic stable voltage in both over-excitation counted and not counted. The simulation results of examples indicate the correctness and effectiveness of these methods, and also fully verify the function and influence of generator over-excitation limiter in full dynamic voltage stability research.展开更多
基金supported by the National Natural Science Foundation of China,No.82174112(to PZ)Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine,No.22HHZYSS00015(to PZ)State-Sponsored Postdoctoral Researcher Program,No.GZC20231925(to LN)。
文摘Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.”
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
基金National Key Research and Development Program of China(2016YFD0100201)Scientific Research Conditions Construction and Achievement Transformation Project of Gansu Academy of Agricultural Sciences(Modern Biological Breeding)(2019GAAS07)+1 种基金Science and Technology Major Project of Gansu Province(18ZD2NA008)Crop Germplasm Resources Protection(2017NWB036-5)。
文摘Drought is one of the primary abiotic stress factors affecting the yield,growth,and development of soybeans.In extreme cases,drought can reduce yield by more than 50%.The seedling stage is an important determinant of soybean growth:the number and vigor of seedlings will affect growth and yield at harvest.Therefore,it is important to study the drought resistance of soybean seedlings.In this study,a recombinant inbred line(RIL)population comprising 234 F_(6:10)lines(derived from Zhonghuang35×Jindou 21)and a panel of 259 soybean accessions was subjected to drought conditions to identify the effects on phenotypic traits under these conditions.Using a genetic map constructed by single nucleotide polymorphism(SNPs)markers,18 quantitative trait loci(QTL)on 7 soybean chromosomes were identified in two environments.This included 9 QTL clusters identified in the RIL population.Fifty-three QTL were identified in 19 soybean chromosomes by genome-wide association analysis(GWAS)in the panel of accessions,including 69 significant SNPs(-log_(10)(P)≥3.97).A combination of the two populations revealed that two SNPs(-log_(10)(P)≥3.0)fell within two of the QTL(qPH7-4 and qPH7-6)confidence intervals.We not only re-located several previously reported drought-resistance genes in soybean and other crops but also identified several non-synonymous stress-related mutation site differences between the two parents,involving Glyma.07 g093000,Glyma.07 g093200,Glyma.07 g094100 and Glyma.07 g094200.One previously unreported new gene related to drought stress,Glyma.07 g094200,was found by regional association analysis.The significant SNP CHR7-17619(G/T)was within an exon of the Glyma.07 g094200 gene.In the RIL population,the DSP value of the"T"allele of CHR7-17619 was significantly(P<0.05)larger than the"G"allele in different environments.The results of our study lay the groundwork for cloning and molecular marker-assisted selection of droughtresistance genes in soybeans at the seedling stage.
基金This work was supported by the National Key Research and Development Program of China(2018YFD1000907)National Natural Science Foundation of China(31771718,31801307)+1 种基金Natural Science Foundation of Shandong Province(ZR2018BC033)Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B05 and CXGC2018E06).
文摘Over the last few decades,waterlogging stress has increasingly threatened global cotton production.Waterlogging results in reduced soil oxygen,impairing the growth and development of this valuable crop and often resulting in severe yield loss or crop failure.However,as cotton has an indeterminate growth habit,it is able to adapt to waterlogging stress by activating three mechanisms:the escape,quiescence,and self-regulating compensation mechanisms.The escape mechanism includes accelerated growth,formation of adventitious roots,and production of aerenchyma.The quiescence mechanism involves reduced biomass accumulation and energy dissipation via physiological,biochemical,and molecular events.The self-regulation compensation mechanism allows plants to exploit their indeterminate growth habit and compensatory growth ability by accelerating growth and development following relief from waterlogging stress.We review how the growth and development of cotton is impaired by waterlogging,focusing on the three strategies associated with tolerance and adaptation to the stress.We discuss agronomic measures and prospects for mitigating the adverse effects of waterlogging stress.
基金This project was supported by the Fundamental Research Funds for the Central Universities(WUT:2018IB001)the Fundamental Research Funds for the Central Universities(WUT:2019III130CG).
文摘To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical.
基金supported by the National Natural Science Foundation of China(Projects 32030100,32102362),Natural Science Foundation of Beijing(6222004)National Key Research and Development Program(2018YFD1000200)+1 种基金Science and Technology Innovation Support Program(BUA-HHXD2022005)Research and Innovation Ability Improvement Program for Young Teachers of Beijing University of Agriculture.
文摘Vacuolar Phosphate Transporter1(VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening.Interestingly,here we find that the VPT1 may transport sugar in response to soluble sugar status of fruits.The VvVPT1 protein isolated from grape(Vitis vinifera)berrieswas tonoplast-localized and contains SPX(Syg1/Pho81/XPR1)and MFS(major facilitator superfamily)domains.Its mRNA expression was significantly increased during fruit ripening and induced by sucrose.Functional analyses based on transient transgenic systems in grape berry showed that VvVPT1 positively regulated berry ripening and significantly affected hexose contents,fruit firmness,and ripening-related gene expression.The VPT1 proteins(Grape VvVPT1,strawberry FaVPT1,and Arabidopsis AtVPT1)all showed low affinity for phosphate verified in yeast system,while they appear different in sugar transport capacity,consistent with fruit sugar status.Thus,our findings reveal a role for VPT1 in fruit ripening,associated to its SPX and MFS domains in direct transport of soluble sugar available into the vacuole,and open potential avenues for genetic improvement in fleshy fruit.
文摘OBJECTIVE The objective of this study was to explore the effect of CDA-2, a selective inhibitor of abnormal methylation enzymes in cancer cells, on the therapeutic efficacy of cytotoxic chemotherapy. METHODS Advanced cancer patients, all of whom had previously undergone chemotherapy, were randomly divided into 2 groups, one receiving chemotherapy only as the control group, and the other receiving CDA-2 in addition to chemotherapy as the combination group. The therapeutic efficacies and the toxic maniestations of the 2 groups were compared based on the WHO criteria. RESULTS Of 454 cancer patients enrolled in phase Ⅲ clinical trials of CDA-2, 80, 188, and 186 were breast cancer, NSCLC, and primary hepatoma patients, respectively. Among them 378 patients completed treatments according to the protocols. The results showed that the overall effective rate of the combination group was 2.6 fold that of the control group, 4.8 fold in the case of breast cancer, 2.3 fold in the case of primary hepatoma, and 2.2 fold in the case of NSCLC. Surprisingly, the combination therapy appeared to work better for stage Ⅳ than stage Ⅲ patients. CDA-2 did not contribute additional toxicity. On the contrary, it reduced toxic manifestations of chemotherapy, particularly regarding white blood cells, nausea and vomiting. CONCLUSION Modulation of abnormal methylation enzymes by CDA-2 is definitely helpful to supplement chemotherapy. It significantly increased the therapeutic efficacy and reduced the toxic manifestation of cytotoxic chemotherapy on breast cancer and NSCLC.
基金Supported by National Natural Science Foundation of China(Grant No.51672241)International Cooperation Foundation of Ministry of Agriculture of China(Grant No.20162003)+2 种基金Collaborative Innovation Program of Industry University Research of Jiangsu Province China(Grant No.BE2015113)Young and Middle-aged Academic Leaders of Universities‘‘Qinglan Project’’of Jiangsu Province 2016Foundation of Key Laboratory of Modern Agricultural Equipment Ministry of Agriculture,China(Grant No.201604003)
文摘The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost and low energy consumption. It has vast application foreground in the field of aviation, spaceflight, high speed train and etc. The internal thread processing and anti-fatigue manufacture technology are summarized. In terms of the perspective of processing quality and fatigue serving life, the advantages and disadvantages of the processing methods from are compared. The internal thread cold-extrusion processing technology is investigated for the purpose of improving the anti-fatigue serving life of internal thread. The superiorities of the plastic deformation law and surface integrity of the metal layer in the course of cold extrusion for improving its stability and economy are summed up. The proposed research forecasts the develop- ment tendency of the internal thread anti-fatigue manufacturing technology.
基金supported by Major military logistics research pro-jects(AWS13Z006)National Key Research and Development program of China(2017YFC0806404).
文摘In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.
文摘In the adenine-induced renal failure rats, reversibility of renal failure and recovery of bone mineral density (BMD) by discontinuation of adenine-rich diet were reported: We think that the effect to bone metabolism with medication may be able to be evaluated as reinforcement of the BMD recovery. We have so far investigated the Chinese herbal medicine based on Hachimi-jio-gan (HJG) which are more effective than HJG alone. In this study, we investigated the effects of our Chinese herbal prescription on BMD in the adenine-treated rats compared to that of vitamin D3treatment. Young male rats were administrated 100 mg/ml adenine for 8 weeks, and they showed renal failure and bone loss. The adenine-treated rats were divided into the following 3 groups, that is, the group experienced no treatment (control), the group givenour Chinese herbal medicine (HAO), and the group given vitamin D3 (VD3) medication. It is likely that VD3 medication was less effective for increase of the femoral BMD than increase of the spinal BMD. In contrast, HAO was effective for increase of the femoral BMD. The VD3 group showed low deoxypyridinoline (Dpd: bone resorption maker) as compared to the control group.However, the HAO group showed same or slightly high Dpd. It is suggested that VD3 may increase BMD by reduction of bone resorption, while HAO may show effect on BMD by activating bone metabolism. It is indicated that HAO may become a curative medicine for bone loss because of the different target site from vitamin D3.
文摘Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Source Heat Pump System (GSHPS). The authors presented a new concept of "flow transfixion" by analyzing general features of aquifers, and then discussed interaction of the flow transfixion with the beat transfixion, which has practical significance to projects. A numerical model of groundwater flow was established based on the basic tenets of water-heat transferring in the aquifer. On this basis the flow field and the temperature field of GSHPS for a site in Shenyang City were numerically simulated. The basis of the flow transfixion was obtained; it was discussed for the influence of the flow transfixion on the heat transfixion. To a certain extent, the study offers some reference for the projects' design of GSHP in the studied area.
文摘In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal dimension of the global attractors of this problem is finite.
基金This work is supported mainly by the National Key Research and Development Program of China(Grant No.2018YFE0204000)the National Natural Science Foundation of China(Grant Nos.21975245,U20A20206,51972300,12004094,and 32101004)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the Science and Technology Research and Development Program of Handan(Grant No.21422111246)Prof.Y.Huang.also acknowledges the support from the Doctoral Special Fund Project of Hebei University of Engineering.Prof.K.Liu.appreciates the support from Youth Innovation Promotion Association,the Chinese Academy of Sciences(Grant No.2020114)the Beijing Nova Program(Grant No.2020117)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515110578).
文摘Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4).
基金supported by the National Natural Science Foundation of China under Grant No.61806138KeyR&DProgram of Shanxi Province(International Cooperation)under Grant No.201903D421048+1 种基金National Key Research and Development Program of China under Grant No.2018YFC1604000School Level Postgraduate Education Innovation Projects under Grant No.XCX212082.
文摘The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality.
基金supported by the National Natural Science Foundation of China under Grant No.61806138Key R&D program of Shanxi Province(High Technology)under Grant No.201903D121119Science and Technology Development Foundation of the Central Guiding Local under Grant No.YDZJSX2021A038.
文摘Compressed sensing(CS),as an efficient data transmission method,has achieved great success in the field of data transmission such as image,video and text.It can robustly recover signals from fewer Measurements,effectively alleviating the bandwidth pressure during data transmission.However,CS has many shortcomings in the transmission of hyperspectral image(HSI)data.This work aims to consider the application of CS in the transmission of hyperspectral image(HSI)data,and provides a feasible research scheme for CS of HSI data.HSI has rich spectral information and spatial information in bands,which can reflect the physical properties of the target.Most of the hyperspectral image compressed sensing(HSICS)algorithms cannot effectively use the inter-band information of HSI,resulting in poor reconstruction effects.In this paper,A three-stage hyperspectral image compression sensing algorithm(Three-stages HSICS)is proposed to obtain intra-band and inter-band characteristics of HSI,which can improve the reconstruction accuracy of HSI.Here,we establish a multi-objective band selection(Mop-BS)model,amulti-hypothesis prediction(MHP)model and a residual sparse(ReWSR)model for HSI,and use a staged reconstruction method to restore the compressed HSI.The simulation results show that the three-stage HSICS successfully improves the reconstruction accuracy of HSICS,and it performs best among all comparison algorithms.
基金supported by the National High Technology Research and Development Program of China (No. 2020YFB1806004)。
文摘Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.
文摘The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulation is an important measure in research of complex power grid. With the development of full dynamic simulation technology, the research of dynamic voltage stability by using full dynamic simulation program which is based on time-domain simulation can be carried out. This paper uses full dynamic simulation program in dynamic voltage stability research, lays special stress on research in how generator over-excitation limiter functioned and influence in dynamic voltage stability research, and raise 2 methods and steps to figure out dynamic stable voltage in both over-excitation counted and not counted. The simulation results of examples indicate the correctness and effectiveness of these methods, and also fully verify the function and influence of generator over-excitation limiter in full dynamic voltage stability research.