Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Metal-air batteries,like Zn-air batteries(ZABs)are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode.Herein,a novel bimetallic Co/CoFe na...Metal-air batteries,like Zn-air batteries(ZABs)are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode.Herein,a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon(NC)was prepared through a strategy of coordination construction-cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst.Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support,leading to improved electric conductivity,accelerated reaction kinetics,and optimized adsorption energy for intermediates of ORR and OER.The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential(E_(1/2))of ORR and the potential at 10 mA cm^(-2)(E_(j=10))of OER.The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test(360 h,15 days).A sodium polyacrylate(PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity.The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.展开更多
Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,f...Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,free-standing,hetero-structured Ni_(3)N-Ni_(0.2)Mo_(0.8)N nanowire arrays are prepared on carbon cloth(CC)electrodes for hydrogen evolution reaction(HER)and glycerol oxidation reaction(GOR)to formate with a remarkably high Faradaic efficiency of 96%.A two-electrode electrolyzer for GOR-assisted hydrogen production operates with a current density of 10 mA cm^(-2)at an applied cell voltage of 1.40 V,220 mV lower than for alkaline water splitting.In-situ Raman measurements identify Ni(Ⅲ)as the active form of the catalyst for GOR rather than Ni(IV)and in-situ Fourier transform infrared(FTIR)spectroscopy measurements reveal pathways for GOR to formate.From density functional theory(DFT)calculations,the Ni_(3)N-Ni_(0.2)Mo_(0.8)N heterostructure is beneficial for optimizing adsorption energies of reagents and intermediates and for promoting HER and GOR activities by charge redistribution across the heterointerface.The same electrode also catalyzes conversion of ethylene glycol from polyethylene terephthalate(PET)plastic hydrolysate into formate.The combined results show that electrolytic H_(2) and formate production from alkaline glycerol and ethylene glycol solutions provide a promising strategy as a cost-effective energy supply.展开更多
Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous elec...Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by operating voltage and capacity limits.Different from the conventional intercalation/de-intercalation mechanism,Bi_(2)O_(3) implements charge storage by a reversible phase conversion mechanism.Herein,taking Bi_(2)O_(3) electrode with wide potential window(from-1.2 to 1 V vs.saturated calomel electrode)and high capacity as battery-type anode,we propose that the overall performance of aqueous BSHs can be greatly upgraded under neutral condition.By paring with stable layer-structuredδ-MnO_(2) cathode,a sodium-ion Bi_(2)O_(3)//MnO_(2) BSH with an ultrahigh voltage of 2.4 V in neutral sodium sulfate electrolyte is developed for the first time.This hybrid device exhibits high capacity(~215 C g^(-1) at 1 mA cm^(-2)),relatively long lifespan(~77.2%capacity retention after 1500 cycles),remarkable energy density(71.7 Wh kg^(-1)@400.5 W kg^(-1))and power density(3204.3 W kg^(-1)@18.8 Wh kg^(-1)).Electrochemical measurements combining a set of spectroscopic techniques reveal the reversible phase conversion between bismuth oxide and metallic bismuth(Bi_(2)O_(3)?Bi0)through Bi^(2+) transition phase in neutral sodium sulfate solution,which can deliver multielectron transfer up to 6,leading to the high-energy BSHs.Our work sheds light on the feasibility of using Bi_(2)O_(3) electrode under neutral condition to address the issue of narrow voltage and low capacity for aqueous BSHs.展开更多
Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed ...Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed that the number of Cajal-Retzius cells markedly reduced with age in both wild type and in mice over-expressing the Swedish double mutant form of amyloid precursor protein 695 (transgenic (Tg) 2576 mice). Numerous reelin-positive neurons were positive for activated caspase 3 in Tg2576 mice, suggesting that Cajal-Retzius neuronal loss occurred via apoptosis in this Alzheimer's disease model. Compared with wild type, the number of Cajal-Retzius cells was significantly lower in Tg2576 mice. Western blot analysis confirmed that reelin levels were markedly lower in Tg2576 mice than in wild-type mice. The decline in Cajal-Retzius cells in Tg2576 mice was found to occur concomitantly with the onset of Alzheimer's disease amyloid pathology and related behavioral deficits. Overall, these data indicated that Cajal-Retzius cell loss occurred with the onset and development of Alzheimer's disease.展开更多
The transcription factor ABSCISIC ACID INSENSITIVE5(ABI5)plays a crucial role in abscisic acid(ABA)signaling during seed germination.However,how ABI5 is regulated during this process is poorly understood.Here,we repor...The transcription factor ABSCISIC ACID INSENSITIVE5(ABI5)plays a crucial role in abscisic acid(ABA)signaling during seed germination.However,how ABI5 is regulated during this process is poorly understood.Here,we report that the ubiquitin E3 ligase MIEL1 and its target transcription factor MYB30 modulate ABA responses in Arabidopsis thaliana during seed germination and seedling establishment via the precise regulation of ABI5.MIEL1 interacts with and ubiquitinates ABI5 to facilitate its degradation during germination.The transcription factor MYB30,whose turnover is mediated by MIEL1 during seed germination,also interacts with ABI5 to interfere with its transcriptional activity.MYB30 functions downstream of MIEL1 in the ABA response,and both are epistatic to ABI5 in ABA-mediated inhibition of seed germination and postgerminative growth.ABA treatment induces the degradation of MIEL1 and represses the interaction between MIEL1 and ABI5/MYB30,thus releasing both ABI5 and MYB30.Our results demonstrate that MIEL1 directly mediates the proteasomal degradation of ABI5 and inhibits its activity via the release of its target protein MYB30,thus ensuring precise ABA signaling during seed germination and seedling establishment.展开更多
We describe here an electro-reforming strategy to upcycle polyethylene terephthalate(PET)waste with simultaneous hydrogen production by a bifunctional nickel-cobalt nitride nanosheets electrocatalyst.PET plastics are ...We describe here an electro-reforming strategy to upcycle polyethylene terephthalate(PET)waste with simultaneous hydrogen production by a bifunctional nickel-cobalt nitride nanosheets electrocatalyst.PET plastics are digested in alkaline solution giving an electrochemically active monomer ethylene glycol(EG).The introduction of Co in Co-Ni3N/carbon cloth(CC)promotes the redox behavior of Ni2+/Ni3+,which is beneficial for EG oxidation at an ultra-low potential(1.15 V vs.reversible hydrogen electrode(RHE))and breaks through the limitation of high catalytic potentials of simple Ni-based electrocatalysts(1.30 V).In PET hydrolysate with Co-Ni3N/CC couples,an integrated EG oxidation-hydrogen production system achieves a current density of 50 mA·cm^(−2)at a cell voltage of 1.46 V,which is 370 mV lower than the conventional water splitting.The in-situ Raman and Fourier transform infrared(FTIR)spectroscopies and density functional theory(DFT)calculations identify the catalytic mechanism and point to advantages of heterostructure engineering in optimizing adsorption energies and promoting catalytic activities for EG oxidation.展开更多
Air cathode performance is essential for rechargeable zinc–air batteries(ZABs).In this study,we develop a self-templated synthesis technique for fabricating bimetallic alloys(FeNi_(3)),bimetallic nitrides(FeNi_(3)N)a...Air cathode performance is essential for rechargeable zinc–air batteries(ZABs).In this study,we develop a self-templated synthesis technique for fabricating bimetallic alloys(FeNi_(3)),bimetallic nitrides(FeNi_(3)N)and heterostructured FeNi_(3)/FeNi_(3)N hollow nanotubes.Owing to its structural and compositional advantages,FeNi_(3)/FeNi_(3)N exhibits remarkable bifunctional oxygen electrocatalytic performance with an extremely small potential gap of 0.68V between the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Theoretical calculations reveal reduced Gibbs free energy for the rate-limiting O–O bond formation during OER due to the self-adaptive surface reconfiguration,which induces a synergistic effect between Fe(Ni)OOH developed in situ on the surface and the inner FeNi_(3)/FeNi_(3)N.ZAB fabricated using the FeNi_(3)/FeNi_(3)N catalyst shows high power density,small charge/discharge voltage gap and excellent cycling stability.In addition to its excellent battery performance,the corresponding quasi-solid-state ZAB shows robust flexibility and integrability.The synthesis method is extended to prepare a CoFe/CoFeN oxygen electrocatalyst,demonstrating its applicability to other iron-group elements.展开更多
Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction(OER)catalysts due to the faster mass transfer and better charge carrying ability.Herein,an exquisite high nitr...Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction(OER)catalysts due to the faster mass transfer and better charge carrying ability.Herein,an exquisite high nitrogen-containing ligand was designed and readily synthesized from the low-cost biomolecule adenine.Accordingly,three new MOFs(TJU-103,TJU-104 and TJU-105)were prepared using the Co(II)or Mn(II)ions as metal nodes.Through rationally controlling pyrolysis condition,in virtue of the high nitrogen content in well-defined periodic structure of the pristine MOFs,TJU-104–900 among the derived MOFs with hierarchical porous structure,i.e.,N-doped graphitic carbon encapsulating homogeneously distributed cobalt nanoparticles,could be conveniently obtained.Thanks to the synergistic effect of the hierarchical structure and well dispersed active components(i.e.,C=O,Co–Nx,graphitic C and N,pyridinic N),it could exhibit an overpotential of 280 mV@10mA/cm^(2)on carbon cloth for OER activity.This work provides the inspiration for fabrication of nitrogen-doped carbon/metal electrocatalysts from cost-effective and abundant biomolecules,which is promising for practical OER application.展开更多
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
基金This work was supported by the National Natural Science Foundation of China(21872105,22072107)the Science&Technology Commission of Shanghai Municipality(19DZ2271500).
文摘Metal-air batteries,like Zn-air batteries(ZABs)are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode.Herein,a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon(NC)was prepared through a strategy of coordination construction-cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst.Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support,leading to improved electric conductivity,accelerated reaction kinetics,and optimized adsorption energy for intermediates of ORR and OER.The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential(E_(1/2))of ORR and the potential at 10 mA cm^(-2)(E_(j=10))of OER.The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test(360 h,15 days).A sodium polyacrylate(PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity.The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Science&Technology Commission of Shanghai Municipality(19DZ2271500)the Fundamental Research Funds for the Central Universities。
文摘Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,free-standing,hetero-structured Ni_(3)N-Ni_(0.2)Mo_(0.8)N nanowire arrays are prepared on carbon cloth(CC)electrodes for hydrogen evolution reaction(HER)and glycerol oxidation reaction(GOR)to formate with a remarkably high Faradaic efficiency of 96%.A two-electrode electrolyzer for GOR-assisted hydrogen production operates with a current density of 10 mA cm^(-2)at an applied cell voltage of 1.40 V,220 mV lower than for alkaline water splitting.In-situ Raman measurements identify Ni(Ⅲ)as the active form of the catalyst for GOR rather than Ni(IV)and in-situ Fourier transform infrared(FTIR)spectroscopy measurements reveal pathways for GOR to formate.From density functional theory(DFT)calculations,the Ni_(3)N-Ni_(0.2)Mo_(0.8)N heterostructure is beneficial for optimizing adsorption energies of reagents and intermediates and for promoting HER and GOR activities by charge redistribution across the heterointerface.The same electrode also catalyzes conversion of ethylene glycol from polyethylene terephthalate(PET)plastic hydrolysate into formate.The combined results show that electrolytic H_(2) and formate production from alkaline glycerol and ethylene glycol solutions provide a promising strategy as a cost-effective energy supply.
基金supported by the National Natural Science Foundation of China (21872105, 22072107)the Science & Technology Commission of Shanghai Municipality (19DZ2271500)。
文摘Aqueous battery-supercapacitor hybrid devices(BSHs)are of great importance to enrich electrochemical energy storage systems with both high energy and power densities.However,further improvement of BSHs in aqueous electrolytes is greatly hampered by operating voltage and capacity limits.Different from the conventional intercalation/de-intercalation mechanism,Bi_(2)O_(3) implements charge storage by a reversible phase conversion mechanism.Herein,taking Bi_(2)O_(3) electrode with wide potential window(from-1.2 to 1 V vs.saturated calomel electrode)and high capacity as battery-type anode,we propose that the overall performance of aqueous BSHs can be greatly upgraded under neutral condition.By paring with stable layer-structuredδ-MnO_(2) cathode,a sodium-ion Bi_(2)O_(3)//MnO_(2) BSH with an ultrahigh voltage of 2.4 V in neutral sodium sulfate electrolyte is developed for the first time.This hybrid device exhibits high capacity(~215 C g^(-1) at 1 mA cm^(-2)),relatively long lifespan(~77.2%capacity retention after 1500 cycles),remarkable energy density(71.7 Wh kg^(-1)@400.5 W kg^(-1))and power density(3204.3 W kg^(-1)@18.8 Wh kg^(-1)).Electrochemical measurements combining a set of spectroscopic techniques reveal the reversible phase conversion between bismuth oxide and metallic bismuth(Bi_(2)O_(3)?Bi0)through Bi^(2+) transition phase in neutral sodium sulfate solution,which can deliver multielectron transfer up to 6,leading to the high-energy BSHs.Our work sheds light on the feasibility of using Bi_(2)O_(3) electrode under neutral condition to address the issue of narrow voltage and low capacity for aqueous BSHs.
基金supported by the National Natural Science Foundation of China,No.31070952,81071029the Joint Funds of the NSFC with Henan Provence Government for Fostering Talents,No.U1204809the Henan Province Science Research Project,No.132102310111
文摘Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed that the number of Cajal-Retzius cells markedly reduced with age in both wild type and in mice over-expressing the Swedish double mutant form of amyloid precursor protein 695 (transgenic (Tg) 2576 mice). Numerous reelin-positive neurons were positive for activated caspase 3 in Tg2576 mice, suggesting that Cajal-Retzius neuronal loss occurred via apoptosis in this Alzheimer's disease model. Compared with wild type, the number of Cajal-Retzius cells was significantly lower in Tg2576 mice. Western blot analysis confirmed that reelin levels were markedly lower in Tg2576 mice than in wild-type mice. The decline in Cajal-Retzius cells in Tg2576 mice was found to occur concomitantly with the onset of Alzheimer's disease amyloid pathology and related behavioral deficits. Overall, these data indicated that Cajal-Retzius cell loss occurred with the onset and development of Alzheimer's disease.
基金supported by the National Natural Science Foundation of China(21872105,22072107)the Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
基金supported by the National Natural Science Foundation of China(31872656,32170295,and 31870241)the Natural Science Foundation of Henan(212300410022)the project“the Program for Innovative Research Team(in Science and Technology)in University of Henan Province”(21IRTSTHN019)。
文摘The transcription factor ABSCISIC ACID INSENSITIVE5(ABI5)plays a crucial role in abscisic acid(ABA)signaling during seed germination.However,how ABI5 is regulated during this process is poorly understood.Here,we report that the ubiquitin E3 ligase MIEL1 and its target transcription factor MYB30 modulate ABA responses in Arabidopsis thaliana during seed germination and seedling establishment via the precise regulation of ABI5.MIEL1 interacts with and ubiquitinates ABI5 to facilitate its degradation during germination.The transcription factor MYB30,whose turnover is mediated by MIEL1 during seed germination,also interacts with ABI5 to interfere with its transcriptional activity.MYB30 functions downstream of MIEL1 in the ABA response,and both are epistatic to ABI5 in ABA-mediated inhibition of seed germination and postgerminative growth.ABA treatment induces the degradation of MIEL1 and represses the interaction between MIEL1 and ABI5/MYB30,thus releasing both ABI5 and MYB30.Our results demonstrate that MIEL1 directly mediates the proteasomal degradation of ABI5 and inhibits its activity via the release of its target protein MYB30,thus ensuring precise ABA signaling during seed germination and seedling establishment.
基金supported by the National Natural Science Foundation of China(Nos.22072107 and 21872105)the Science&Technology Commission of Shanghai Municipality(No.19DZ2271500)the Fundamental Research Funds for the Central Universities.
文摘We describe here an electro-reforming strategy to upcycle polyethylene terephthalate(PET)waste with simultaneous hydrogen production by a bifunctional nickel-cobalt nitride nanosheets electrocatalyst.PET plastics are digested in alkaline solution giving an electrochemically active monomer ethylene glycol(EG).The introduction of Co in Co-Ni3N/carbon cloth(CC)promotes the redox behavior of Ni2+/Ni3+,which is beneficial for EG oxidation at an ultra-low potential(1.15 V vs.reversible hydrogen electrode(RHE))and breaks through the limitation of high catalytic potentials of simple Ni-based electrocatalysts(1.30 V).In PET hydrolysate with Co-Ni3N/CC couples,an integrated EG oxidation-hydrogen production system achieves a current density of 50 mA·cm^(−2)at a cell voltage of 1.46 V,which is 370 mV lower than the conventional water splitting.The in-situ Raman and Fourier transform infrared(FTIR)spectroscopies and density functional theory(DFT)calculations identify the catalytic mechanism and point to advantages of heterostructure engineering in optimizing adsorption energies and promoting catalytic activities for EG oxidation.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Science&Technology Commission of Shanghai Municipality(19DZ2271500)the Fundamental Research Funds for the Central Universities.
文摘Air cathode performance is essential for rechargeable zinc–air batteries(ZABs).In this study,we develop a self-templated synthesis technique for fabricating bimetallic alloys(FeNi_(3)),bimetallic nitrides(FeNi_(3)N)and heterostructured FeNi_(3)/FeNi_(3)N hollow nanotubes.Owing to its structural and compositional advantages,FeNi_(3)/FeNi_(3)N exhibits remarkable bifunctional oxygen electrocatalytic performance with an extremely small potential gap of 0.68V between the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Theoretical calculations reveal reduced Gibbs free energy for the rate-limiting O–O bond formation during OER due to the self-adaptive surface reconfiguration,which induces a synergistic effect between Fe(Ni)OOH developed in situ on the surface and the inner FeNi_(3)/FeNi_(3)N.ZAB fabricated using the FeNi_(3)/FeNi_(3)N catalyst shows high power density,small charge/discharge voltage gap and excellent cycling stability.In addition to its excellent battery performance,the corresponding quasi-solid-state ZAB shows robust flexibility and integrability.The synthesis method is extended to prepare a CoFe/CoFeN oxygen electrocatalyst,demonstrating its applicability to other iron-group elements.
基金financially supported by the National Natural Science Foundation of China(22072107 and 21872105)the Science&Technology Commission of Shanghai Municipality(19DZ2271500)the Fundamental Research Funds for the Central Universities。
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21875165,22272118)the Fundamental Research Funds for the Central Universities(No.22120210529)+1 种基金the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,19DZ2271500)the Recruitment Program of Global Experts of China,and Research Grants from the City University of Hong Kong(Nos.CityU 11308420,6000716,9667217).
文摘Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction(OER)catalysts due to the faster mass transfer and better charge carrying ability.Herein,an exquisite high nitrogen-containing ligand was designed and readily synthesized from the low-cost biomolecule adenine.Accordingly,three new MOFs(TJU-103,TJU-104 and TJU-105)were prepared using the Co(II)or Mn(II)ions as metal nodes.Through rationally controlling pyrolysis condition,in virtue of the high nitrogen content in well-defined periodic structure of the pristine MOFs,TJU-104–900 among the derived MOFs with hierarchical porous structure,i.e.,N-doped graphitic carbon encapsulating homogeneously distributed cobalt nanoparticles,could be conveniently obtained.Thanks to the synergistic effect of the hierarchical structure and well dispersed active components(i.e.,C=O,Co–Nx,graphitic C and N,pyridinic N),it could exhibit an overpotential of 280 mV@10mA/cm^(2)on carbon cloth for OER activity.This work provides the inspiration for fabrication of nitrogen-doped carbon/metal electrocatalysts from cost-effective and abundant biomolecules,which is promising for practical OER application.