期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance 被引量:1
1
作者 Jingqiang Zheng Yulun Wu +6 位作者 Chaohong Guan Danjun Wang yanqing lai Jie Li Fuhua Yang Simin Li Zhian Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期235-244,共10页
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi... Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance. 展开更多
关键词 hard carbon LIGNIN SODIUM components sodium-ion storage SOLID ELECTROLYTE INTERPHASE
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries 被引量:1
2
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang yanqing lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) In-situ coating PAA-Li Partial protonation
下载PDF
Structural regulation chemistry of lithium-ion solvation in nonflammable phosphate-based electrolytes for high interfacial compatibility with graphite anode 被引量:1
3
作者 Chenyang Shi Xinjing Huang +8 位作者 Jiahao Gu Zeyu Huang Fangyan Liu Mengran Wang Qiyu Wang Bo Hong Zhian Zhang Jie Li yanqing lai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期501-508,I0013,共9页
With the booming development of lithium-ion batteries,safety has become one of the most primary focuses of current researches.Although there are various approaches to enhance the safety of lithiumion batteries,phospha... With the booming development of lithium-ion batteries,safety has become one of the most primary focuses of current researches.Although there are various approaches to enhance the safety of lithiumion batteries,phosphate-based electrolyte holds the greatest potential for practical application due to their non-flammability.Nonetheless,its compatibility issue with the graphite anode remains a significant obstacle to its widespread use.Herein,an effective method is proposed to improve the compatibility of electrolyte with graphite(Gr)anode by rationally adjusting the proportion of lithium salt and solvent components to optimize the Li^(+)solvation structure.By slightly increasing the Li^(+)/triethyl phosphate(TEP)ratio,TEP alone cannot fully occupy the inner solvation sheath and therefore less polar ethylene carbonate(EC)has to be recruited,and the solvation structure gradually changes from Li^(+)–[TEP]_(4)to Li^(+)–[TEP]_(3)[EC]with the coexistence of EC and TEP.Simultaneously,EC molecules in the Li^(+)–[TEP]_(3)[EC]could be preferentially reduced on graphite compared to the TEP molecules,resulting in the formation of a uniform and durable solid-electrolyte interphase(SEI)layer.Benefiting from the optimized phosphate-based electrolyte,the Gr|Li battery exhibits a capacity retention rate of 96.8%after stable cycling at 0.5 C for 470 cycles which shows a longer cycle life than the battery with carbonate electrolyte(cycling at 0.5 C for 450 cycles).Therefore,this work provides the guidance for designing a non-flammable phosphate-based electrolyte for high-safety and long cycling-life lithium-ion batteries. 展开更多
关键词 Ethylene carbonate Triethyl phosphate Solvation structure Non-flammable electrolyte
下载PDF
Molecular Reactivity and Interface Stability Modification in In-Situ Gel Electrolyte for High Performance Quasi-Solid-State Lithium Metal Batteries 被引量:1
4
作者 Qiyu Wang Xiangqun Xu +4 位作者 Bo Hong Maohui Bai Jie Li Zhian Zhang yanqing lai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期8-19,共12页
Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lit... Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery. 展开更多
关键词 F contained end groups in-situ gel electrolyte interface stability molecular reactivity quasi-solid-state lithium metal battery
下载PDF
A systematical study on the electrodeposition process of metallic lithium 被引量:4
5
作者 Hailin Fan Chunhui Gao +3 位作者 Huai Jiang Qingyuan Dong Bo Hong yanqing lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期59-70,共12页
In this study,commercial copper(Cu)foil and Cu foam are used as the working electrodes to systematically investigate the electrochemical deposition and dissolution processes of metallic lithium(Li)on these electrodes;... In this study,commercial copper(Cu)foil and Cu foam are used as the working electrodes to systematically investigate the electrochemical deposition and dissolution processes of metallic lithium(Li)on these electrodes;Li metal deposited on the Cu foil electrode is porous and loose.The surface solid electrolyte interface(SEI)film after dissolution from Li dendrites maintains a dendritic porous structure,resulting in a large volume effect of the electrode during the cycle.The Cu foam electrode provides preferential nucleation and deposition sites near the side surface of the separator;the difference in Li affinity results in a heterogeneous deposition and dendrite growth of metallic Li. 展开更多
关键词 Deposition behavior Deposition overpotential Dendrite growth Selective deposition Interface impedance
下载PDF
A 3D conducting scaffold with in-situ grown lithiophilic Ni_(2)P nanoarrays for high stability lithium metal anodes 被引量:2
6
作者 Huai Jiang Hailin Fan +6 位作者 Zexun Han Bo Hong Feixiang Wu Kai Zhang Zhian Zhang Jing Fang yanqing lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期301-309,共9页
Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect an... Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect and uncontrollable dendrite growth.Herein,we design the in-situ grown lithiophilic Ni_(2)P nanoarrays inside nickel foam(PNF).Uniform Ni_(2)P nanoarrays coating presents a very low nucleation overpotential,which induces the homogeneous Li deposition in the entire spaces of three-dimensional(3D)metal framework.Specifically,the lithiophilic Ni_(2)P nanoarrays possess characteristics of electrical conductivity and structural stability,which have almost no expansion and damage during repeating Li plating/stripping.Therefore,they chronically inhibit the growth of Li dendrites.This results in an outstanding Coulombic efficiency(CE)of 98% at 3 mA cm^(-2) and an ultra long cycling life over 2000 cycles with a low overpotential.Consequently,the PNF-Li||LiFePO_(4) battery maintains a capacity retention of 95.3% with a stable CE of 99.9% over 500 cycles at 2 C. 展开更多
关键词 Li metal anodes Ni_(2)P nanoarrays 3D metal framework Uniform Li deposition Superior lithiophilicity
下载PDF
Unraveling the morphological evolution mechanism of solid sulfur species in lithium-sulfur batteries with operando light microscopy 被引量:1
7
作者 Jingqiang Zheng Chaohong Guan +7 位作者 Huangxu Li Yangyang Xie Junxian Hu Kai Zhang Bo Hong yanqing lai Jie Li Zhian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期460-468,I0012,共10页
Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling... Solid-liquid phase conversion between various sulfur species in lithium-sulfur(Li-S)batteries is a fundamental reaction of the sulfur cathode.Disclosing the morphological evolution of solid sulfur species upon cycling is of great significance to achieving high energy densities.However,an in-depth investigation of the internal reaction is still lacking.In this work,the evolution process of solid sulfur species on carbon substrates is systematically studied by using an operando light microscope combined with in situ electrochemical impedance spectra technology.The observation of phenomena such as bulk solid sulfur species can form and dissolve independently of the conductive substrates and the transformation of supercooled liquid sulfur to crystalline sulfur.Based on the phenomena mentioned above,a possible mechanism was proposed in which the dissolution reaction of solid sulfur species is a spatially free reaction that involves isotropic physical dissolution,diffusion of molecules,and finally the electrochemical reaction.Correspondingly,the formation of solid sulfur species tends to be a form of crystallization in a saturated solution rather than electrodeposition,as is commonly believed.Our findings offer new insights into the reaction of sulfur cathodes and provide new opportunities to design advanced sulfur cathodes for Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Morphological evolution Supercooled liquid sulfur Operando light microscopy Liquid sulfur droplets
下载PDF
Self-assembled three-dimensional carbon networks with accessorial Lewis base sites and variational electron characteristics as efficient oxygen reduction reaction catalysts for alkaline metal-air batteries
8
作者 Qiyu Wang Zhian Zhang +3 位作者 Mengran Wang Jie Li Jing Fang yanqing lai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1210-1218,共9页
Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In... Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In this study,we develop a novel solvent method to prepare interconnected N,S co-doped three-dimensional(3D)carbon networks with tunable nanopores derived from an asso-ciated complex based on melamine and sodium dodecylbenzene sulfonate(SDBS).After the intro-duction of silica templates and calcination,the catalyst exhibits 3D networks with interconnected 50-nm pores and partial graphitization.With the increase of the number of Lewis base sites caused by the N doping and change of the carbon charge and spin densities caused by the S doping,the designed N,S co-doped catalyst exhibits a similar electrochemical activity to that of the commercial 20-wt%Pt/C as an oxygen reduction reaction catalyst.In addition,in an aluminum-air battery,the proposed catalyst even outperforms the commercial 5-wt%Pt/C catalyst.Both interconnected porous structures and synergistic effects of N and S contribute to the superior catalytic perfor-mance.This study paves the way for the synthesis of various other N-doped and co-doped carbon materials as efficient catalysts in electrochemical energy applications. 展开更多
关键词 Carbon networks N S co-doped Lewis base sites Charge and spin densities Oxygen reduction reaction Alkaline metal-air batteries
下载PDF
可逆阴离子氧化还原反应和结构演变的共生P2/O3双相钠离子电池层状氧化物正极设计和开发 被引量:3
9
作者 张留运 官朝红 +5 位作者 郑景强 李煌旭 李仕豪 李思敏 赖延清 张治安 《Science Bulletin》 SCIE EI CAS CSCD 2023年第2期180-191,M0004,共13页
层状氧化物因在钠离子电池正极中表现出的优异性能而引起了前所未有的关注,其中两种典型的P2和03型材料各具优势.因此,设计和开发包含P2和03材料的复合材料成为一种新的选择.但对这种具有多相结构的复杂正极材料的阴离子/阳离子的行为... 层状氧化物因在钠离子电池正极中表现出的优异性能而引起了前所未有的关注,其中两种典型的P2和03型材料各具优势.因此,设计和开发包含P2和03材料的复合材料成为一种新的选择.但对这种具有多相结构的复杂正极材料的阴离子/阳离子的行为和结构演变过程的研究仍缺乏全面且深入的研究.本文基于两种典型的具有相同元素组成但不同的晶体结构的正极材料:P2型Na0.67Ni0.33Mn0.67O2和O3型NaNi0.5Mn0.5O2,开发了一种成分为Na0.732Ni0.273Mg0.096Mn0.63O2的双相材料,其中包含78.39 wt%的P2相和21.61 wt%的O3相.晶体结构分析和密度泛函理论(DFT)计算结果表明,该复合材料倾向于形成原子水平上的共生结构,且形成的双相结构的复杂晶格条纹可以阻止电极过程中过渡金属和氧原子迁移.相对于单相结构,双相结构提高了正极材料的储钠容量和稳定性,并增强了阴离子O2-/n-氧化还原的可逆性.此外,P2和O3结构共生的类异质结结构具有共享相边界,其形成的互锁效应可有效缓解P2和03结构在电极过程产生的晶格滑移和Na+离子脱出/嵌入的晶格应力.因此,共生的P2/03复合材料表现出较高的容量、较好的循环性能(0.1 C倍率下约有130 mAh g-1容量,循环200次后容量保持率为73.1%)和可逆的晶体结构转变.本文研究证实合理设计的双/多相正极可用于高能钠离子电池的应用. 展开更多
关键词 钠离子电池 层状氧化物 正极材料 结构演变 氧化还原反应 电极过程 晶体结构分析 双相材料
原文传递
基于水添加剂策略调控前驱体溶液化学制备效率超过12%的CZTSSe太阳电池
10
作者 赵祥云 潘逸宁 +3 位作者 刘丝靓 蒋良兴 赖延清 刘芳洋 《Science China Materials》 SCIE EI CAS CSCD 2023年第3期895-902,共8页
高质量的吸收层对制备高效率Cu2ZnSn(S,Se)4(CZTSSe)薄膜太阳电池来说至关重要.与薄膜成核和晶体生长过程相关的前驱体溶液化学值得深入研究,从而有助于提出创造性的原理和策略来提高吸收层的质量和载流子传输特性,进而提升器件性能.然... 高质量的吸收层对制备高效率Cu2ZnSn(S,Se)4(CZTSSe)薄膜太阳电池来说至关重要.与薄膜成核和晶体生长过程相关的前驱体溶液化学值得深入研究,从而有助于提出创造性的原理和策略来提高吸收层的质量和载流子传输特性,进而提升器件性能.然而,前驱体溶液化学的相关研究在CZTSSe太阳电池领域仍处于起步阶段.本工作报道了一种简便的环保添加剂策略来调控基于乙二醇甲醚体系的前驱体溶液化学.加入水添加剂可通过调整前驱体溶液内的溶胶粒径和配位行为来改善前驱体溶液的均一性和热重特性.成功对前驱体溶液化学进行调控后,得到了高质量的CZTSSe吸收层.在此基础上,得益于载流子动力学的增强,最终获得了认证效率达到12.07%的CZTSSe器件.本研究为通过环保添加剂调控前驱体溶液化学从而制备高效率锌黄锡矿CZTSSe薄膜太阳电池开辟了道路. 展开更多
关键词 薄膜太阳电池 吸收层 晶体生长过程 载流子动力学 载流子传输 乙二醇甲醚 均一性 锌黄锡矿
原文传递
Solid–liquid Interdiffusion Bonding of Cu/Sn/Ni Micro-joints with the Assistance of Temperature Gradient 被引量:5
11
作者 yanqing lai Shi Chen +2 位作者 Xiaolei Ren Yuanyuan Qiao Ning Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第11期1912-1924,共13页
A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morpholog... A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morphology of interfacial intermetallic compound(IMC)in Cu/Sn/Ni micro-joints during both SLID and TG-SLID bonding and in the final Cu/(Cu,Ni)_(6)Sn_(5)/Ni full IMC micro-joints were analyzed.Under the effect of Cu-Ni cross-interaction,interfacial(Cu,Ni)_(6)Sn_(5) dominated the IMC growth at all the interfaces.The morphology of the(Cu,Ni)_(6)Sn_(5) grains was closely related to Ni content with three levels of low,medium and high.The full IMC micro-joints consisted of L-(Cu,Ni)_(6) Sn_(5),M-(Cu,Ni)_(6)Sn_(5) and H-(Cu,Ni)_(6)Sn_(5) grains after SLID bonding or TG-SLID bonding with Ni as hot end,while only L-(Cu,Ni)_(6)Sn_(5) grains after TG-SLID bonding with Cu as hot end,showing that the direction of TG had a remarkably effect on the growth and morphology of the interfacial(Cu,Ni)_(6)Sn_(5) during TG-SLID bonding.Thermodynamic analysis revealed the key molar latent heat and critical Ni content between fine-rounded-like(Cu,Ni)_(6)Sn_(5) and block-like(Cu,Ni)_(6)Sn_(5) were 17,725.4 J and 11.0 at.%at 260℃,respectively.Moreover,the growth kinetic of the interfacial IMC was analyzed in detail during bonding with and without TG.Under the combination of TG and Cu-Ni cross-interaction,void-free full IMC micro-joints were fast formed by TG-SLID bonding with Cu as hot end.This bonding method may present a feasible solution to solve the problems of low formation efficiency and inevitable Cu_(3) Sn growth of full IMC joints for 3 D packaging applications. 展开更多
关键词 3D packaging Interfacial reaction Full intermetallic compound(IMC)micro-joints Solid–liquid interdiff usion Temperature gradient Cu-Ni cross-interaction
原文传递
Ambient air-processed Cu_(2)ZnSn(S,Se)_(4) solar cells with over 12%efficiency 被引量:2
12
作者 Xiangyun Zhao Yining Pan +6 位作者 Chuantian Zuo Fengqing Zhang Ziyi Huang Liangxing Jiang yanqing lai Liming Ding Fangyang Liu 《Science Bulletin》 SCIE EI CSCD 2021年第9期880-883,M0003,共5页
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin films are attractive due to environmental-friendly and earth-abundant constituents,and superior optoelectronic properties such as high absorption coeffi-cient and tunable ban... Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin films are attractive due to environmental-friendly and earth-abundant constituents,and superior optoelectronic properties such as high absorption coeffi-cient and tunable bandgaps(1.0-1.5 eV).In the past several years,profound progress has been made in CZTSSe via addressing the issues of massive deep defects[1,2],severe band tailing[3],uncon-trollable grain growth[4,5].and unoptimized interfaces[6,7]. 展开更多
关键词 太阳电池 能量转换效率 铜锌锡硫硒 光吸收层 乙二醇甲醚 工艺成本 惰性气氛 光电特性
原文传递
Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries 被引量:2
13
作者 Junxian Hu Yangyang Xie +2 位作者 Jingqiang Zheng yanqing lai Zhian Zhang 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2650-2657,共8页
Bismuth (Bi)-based electrode has aroused tremendous interest in potassium-ion batteries (PIBs) on account of its low cost, high electronic conductivity, low charge voltage and high theoretical capacity. However, the r... Bismuth (Bi)-based electrode has aroused tremendous interest in potassium-ion batteries (PIBs) on account of its low cost, high electronic conductivity, low charge voltage and high theoretical capacity. However, the rapid capacity fading and poor lifespan induced by the normalized volume expansion (up to ~ 406%) and serious aggregation of Bi during cycling process hinder its application. Herein, bismuth molybdate (Bi2MoO6) microsphere assembled by 2D nanoplate units is successfully prepared by a facile solvothermal method and demonstrated as a promising anode for PIBs. The unique microsphere structure and the self-generated potassium molybdate (K-Mo-O species) during the electrochemical reactions can effectively suppress mechanical fracture of Bi-based anode originated from the volume variation during charge/discharge of the battery. As a result, the Bi2MoO6 microsphere without hybridizing with any other conductive carbon matrix shows superior electrochemical performance, which delivers a high reversible capacity of 121.7 mAh·g^−1 at 100 mA·g^−1 over 600 cycles. In addition, the assembled perylenetetracarboxylic dianhydride (PTCDA)//Bi2MoO6 full-cell coupled with PTCDA cathode demonstrates the potential application of Bi2MoO6 microsphere. Most importantly, the phase evolution of Bi2MoO6 microsphere during potassiation/depotassiation process is successfully deciphered by ex situ X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM) technologies, which reveals a combination mechanism of conversion reaction and alloying/dealloying reaction for Bi2MoO6 anode. Our findings not only open a new way to enhance the performance of Bi-based anode in PIBs, but also provide useful implications to other alloy-type anodes for secondary alkali-metal ion batteries. 展开更多
关键词 Bi2MoO6 MICROSPHERE potassium ion batteries mechanism ANODE
原文传递
Ultra-stable K metal anode enabled by oxygen-rich carbon cloth 被引量:1
14
作者 Yangyang Xie Junxian Hu +4 位作者 Zexun Han Hailin Fan Jingyu Xu yanqing lai Zhian Zhang 《Nano Research》 SCIE EI CAS CSCD 2020年第11期3137-3141,共5页
The K metal batteries are emerged as promising alternatives beyond commercialized Li-ion batteries.However,suppressing uncontrolled dendrite is crucial to the accomplishment of K metal batteries.Herein,an oxygen-rich ... The K metal batteries are emerged as promising alternatives beyond commercialized Li-ion batteries.However,suppressing uncontrolled dendrite is crucial to the accomplishment of K metal batteries.Herein,an oxygen-rich treated carbon cloth(TCC)has been designed as the K plating host to guide K homogeneous nucleation and suppress the dendrite growth.Both density function theory calculations and experimental results demonstrate that abundant oxygen functional groups as K-philic sites on TCC can guide K nucleation and deposition homogeneously.As a result,the TCC electrode exhibits an ultra-long-life over 800 cycles at high current density of 3.0 mA·cm^(−2)for 3.0 mA·h·cm^(−2).Furthermore,the symmetrical cells can run stably for 2,000 h with low over-potential less than 20 mV at 1.0 mA·cm^(−2)for 1.0 mA·h·cm^(−2).Even at a higher current of 5.0 mA·cm^(−2),the TCC electrode can still stably cycle for 1,400 h. 展开更多
关键词 K metal anode DENDRITE oxygen-rich treated carbon cloth K-philic sites ultra-long-life
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部