Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing ...Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.展开更多
Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown. In this study, Olig-...Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown. In this study, Olig-1 mRNA and protein expressions were analyzed by in situ hybridization and immunohistochemistry, to determine the expression profile of Olig-1 in rat brain slices exposed to hypoxia and ischemia. Brains were obtained from 2-day-old Sprague-Dawley rats, and sections were randomly assigned to control and hypoxia/ischemia groups. Hematoxylin-eosin staining revealed karyorrhexis and karyopyknosis in cells from the hypoxia/ischemia group. Under electron microscopy, mitochondria swelling and neuropil edema were observed in the hypoxiaJischemia group. Olig-1 mRNA and protein expressions were increased at 1 day after hypoxia and ischemia treatment. These results suggest that in situ hybridization and immunohistochemistry could be used simultaneously to detect mRNA and protein expression in brain slices.展开更多
As a new type of two-dimensional material,MXene’s unique layered structure,outstanding electrical conductivity,low density,tunable surface chemistry,and solution processability make it receive extensive attention in ...As a new type of two-dimensional material,MXene’s unique layered structure,outstanding electrical conductivity,low density,tunable surface chemistry,and solution processability make it receive extensive attention in various fields,especially for the lightweight shielding mate rials since the report on electromagnetic interference(EMI) shielding of 2D Ti3 C2 Tx in 2016.In this review,the progress on the MXe nes material including their synthetic strategies,prope rties and EMI application is highlighted.First,the recent advance on the different synthesis methods and properties of MXene is summarized.According to their intrinsic characteristics,the application of MXene in EMI fields is then discussed.Finally,the challenges and perspective on the future development of MXene in low-cost preparation and practical application are proposed.展开更多
ZIF-8 with excellent chemical and physical properties is a promising material for the field of electrochemical sensing.However,the poor electrical conductivity of ZIF-8 severely limits its electrochemical performance....ZIF-8 with excellent chemical and physical properties is a promising material for the field of electrochemical sensing.However,the poor electrical conductivity of ZIF-8 severely limits its electrochemical performance.Here,we report a method that can significantly improve the conductivity of ZIF-8 by intercalating Ti_(3)C_(2)T_(x) MXene as a conductive platform.Benefiting from higher conductivity and unique electrocatalytic activity,the obtained MXene/ZIF-8 nanocomposite presented the worthy analytical performance for hydrazine sensing.The successful fabrication of MXene/ZIF-8 holds great promise for the design of electrochemical sensors,and it is a promising material to promote the development of new electrode materials.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12074321)the Young Science and Technology Talents Development Project of Guizhou Provincial Education Department (Grant No. QJH-KY [2022]012)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. SWU020019)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyjmsxmx0648)the Chongqing Graduate Student Research Innovation Project (Grant No. CYB22119)。
文摘Achieving highly-efficient and stable perovskite solar cells(PSCs) with a simplified structure remains challenging, despite the tremendous potential for reducing preparation cost and facile processability by removing hole transport layer(HTL). In this work, eco-friendly glucose(Gl) as an interface modifier for HTL-free narrow bandgap tin-lead(Sn-Pb) PSCs is proposed. Gl not only enhances the wettability of the indium tin oxide to promote perovskite heterogeneous nucleation on substrate, but also realizes defect passivation by interacting with uncoordinated Pb^(2+) and Sn^(2+) in perovskite films. As a result, the quality of the perovskite films has been significantly improved, accompanied by reduced defects of bottom interface and optimized energy level structure of device, leading to an efficiency increase and a less nonradiative voltage loss of 0.102 V(for a bandgap of ~1.26 eV). Consequently, the optimized PSC delivers an unprecedented efficiency over 21% with high open-circuit voltage and enhanced stability, outperforming the control device. This work demonstrates a cost-effective approach to develop simplified structure high efficiency HTL-free Sn-Pb PSC.
基金the National Natural Science Foundation of China, No. 30872778the Natural Science Foundation of Beijing City, No. 7072023Clinical Basic Corporation Foundation of Capital Medi-cal University, No. 2006jl18
文摘Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown. In this study, Olig-1 mRNA and protein expressions were analyzed by in situ hybridization and immunohistochemistry, to determine the expression profile of Olig-1 in rat brain slices exposed to hypoxia and ischemia. Brains were obtained from 2-day-old Sprague-Dawley rats, and sections were randomly assigned to control and hypoxia/ischemia groups. Hematoxylin-eosin staining revealed karyorrhexis and karyopyknosis in cells from the hypoxia/ischemia group. Under electron microscopy, mitochondria swelling and neuropil edema were observed in the hypoxiaJischemia group. Olig-1 mRNA and protein expressions were increased at 1 day after hypoxia and ischemia treatment. These results suggest that in situ hybridization and immunohistochemistry could be used simultaneously to detect mRNA and protein expression in brain slices.
文摘As a new type of two-dimensional material,MXene’s unique layered structure,outstanding electrical conductivity,low density,tunable surface chemistry,and solution processability make it receive extensive attention in various fields,especially for the lightweight shielding mate rials since the report on electromagnetic interference(EMI) shielding of 2D Ti3 C2 Tx in 2016.In this review,the progress on the MXe nes material including their synthetic strategies,prope rties and EMI application is highlighted.First,the recent advance on the different synthesis methods and properties of MXene is summarized.According to their intrinsic characteristics,the application of MXene in EMI fields is then discussed.Finally,the challenges and perspective on the future development of MXene in low-cost preparation and practical application are proposed.
文摘ZIF-8 with excellent chemical and physical properties is a promising material for the field of electrochemical sensing.However,the poor electrical conductivity of ZIF-8 severely limits its electrochemical performance.Here,we report a method that can significantly improve the conductivity of ZIF-8 by intercalating Ti_(3)C_(2)T_(x) MXene as a conductive platform.Benefiting from higher conductivity and unique electrocatalytic activity,the obtained MXene/ZIF-8 nanocomposite presented the worthy analytical performance for hydrazine sensing.The successful fabrication of MXene/ZIF-8 holds great promise for the design of electrochemical sensors,and it is a promising material to promote the development of new electrode materials.