In the digital era,electronic medical record(EMR)has been a major way for hospitals to store patients’medical data.The traditional centralized medical system and semi-trusted cloud storage are difficult to achieve dy...In the digital era,electronic medical record(EMR)has been a major way for hospitals to store patients’medical data.The traditional centralized medical system and semi-trusted cloud storage are difficult to achieve dynamic balance between privacy protection and data sharing.The storage capacity of blockchain is limited and single blockchain schemes have poor scalability and low throughput.To address these issues,we propose a secure and efficient medical data storage and sharing scheme based on double blockchain.In our scheme,we encrypt the original EMR and store it in the cloud.The storage blockchain stores the index of the complete EMR,and the shared blockchain stores the index of the shared part of the EMR.Users with different attributes can make requests to different blockchains to share different parts according to their own permissions.Through experiments,it was found that cloud storage combined with blockchain not only solved the problem of limited storage capacity of blockchain,but also greatly reduced the risk of leakage of the original EMR.Content Extraction Signature(CES)combined with the double blockchain technology realized the separation of the privacy part and the shared part of the original EMR.The symmetric encryption technology combined with Ciphertext-Policy Attribute-Based Encryption(CP–ABE)not only ensures the safe storage of data in the cloud,but also achieves the consistency and convenience of data update,avoiding redundant backup of data.Safety analysis and performance analysis verified the feasibility and effectiveness of our scheme.展开更多
The reverse construction and analysis of the networks of molecular interactions are essential for understanding their functions within cells. In this paper, a logic network model is constructed to investigate the comp...The reverse construction and analysis of the networks of molecular interactions are essential for understanding their functions within cells. In this paper, a logic network model is constructed to investigate the complicated regulation mechanism of shoot genes of Arabidopsis Thaliana in response to stimuli. The dynamics of the complicated logic network is analyzed, discussed, and simulated. The simulation results show that the logic network of the active genes of shoot eventually evolves into eleven attractors under the stimuli, including five 1-periodic and six 2-periodic attractors. Our work provides valuable reference and guidance for biologists to understand and explain Arabidopsis' response to external stimuli by experiments.展开更多
The flowering time of Arabidopsis is sensitive to climate variability, with lighting conditions being a major determinant of the flowering time. Long-days induce early flowering, while short-days induce late flowering...The flowering time of Arabidopsis is sensitive to climate variability, with lighting conditions being a major determinant of the flowering time. Long-days induce early flowering, while short-days induce late flowering or even no flowers. This study investigates the intrinsic mechanisms for Arabidopsis flowering in different lighting conditions using mutual information networks and logic networks. The structure parameters of the mutual information networks show that the average degree and the average core clearly distinguish these networks. A method is then given to find the key structural genes in the mutual information networks and the logic networks respectively. Ten genes are found to possibly promote flowering with three genes that may restrain flowering. The sensitivity of this method to find the genes that promote flowering is 80%, while the sensitivity of the method to find the genes that restrain flowering is 100%.展开更多
基金the Natural Science Foundation of Heilongjiang Province of China under Grant No.LC2016024Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No.17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX–108.
文摘In the digital era,electronic medical record(EMR)has been a major way for hospitals to store patients’medical data.The traditional centralized medical system and semi-trusted cloud storage are difficult to achieve dynamic balance between privacy protection and data sharing.The storage capacity of blockchain is limited and single blockchain schemes have poor scalability and low throughput.To address these issues,we propose a secure and efficient medical data storage and sharing scheme based on double blockchain.In our scheme,we encrypt the original EMR and store it in the cloud.The storage blockchain stores the index of the complete EMR,and the shared blockchain stores the index of the shared part of the EMR.Users with different attributes can make requests to different blockchains to share different parts according to their own permissions.Through experiments,it was found that cloud storage combined with blockchain not only solved the problem of limited storage capacity of blockchain,but also greatly reduced the risk of leakage of the original EMR.Content Extraction Signature(CES)combined with the double blockchain technology realized the separation of the privacy part and the shared part of the original EMR.The symmetric encryption technology combined with Ciphertext-Policy Attribute-Based Encryption(CP–ABE)not only ensures the safe storage of data in the cloud,but also achieves the consistency and convenience of data update,avoiding redundant backup of data.Safety analysis and performance analysis verified the feasibility and effectiveness of our scheme.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 60874036 and 60503002.
文摘The reverse construction and analysis of the networks of molecular interactions are essential for understanding their functions within cells. In this paper, a logic network model is constructed to investigate the complicated regulation mechanism of shoot genes of Arabidopsis Thaliana in response to stimuli. The dynamics of the complicated logic network is analyzed, discussed, and simulated. The simulation results show that the logic network of the active genes of shoot eventually evolves into eleven attractors under the stimuli, including five 1-periodic and six 2-periodic attractors. Our work provides valuable reference and guidance for biologists to understand and explain Arabidopsis' response to external stimuli by experiments.
基金Supported by the National Natural Science Foundation of China (Nos.61170183,61033003, and 91130034)the Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China(No.BS2011SW025)
文摘The flowering time of Arabidopsis is sensitive to climate variability, with lighting conditions being a major determinant of the flowering time. Long-days induce early flowering, while short-days induce late flowering or even no flowers. This study investigates the intrinsic mechanisms for Arabidopsis flowering in different lighting conditions using mutual information networks and logic networks. The structure parameters of the mutual information networks show that the average degree and the average core clearly distinguish these networks. A method is then given to find the key structural genes in the mutual information networks and the logic networks respectively. Ten genes are found to possibly promote flowering with three genes that may restrain flowering. The sensitivity of this method to find the genes that promote flowering is 80%, while the sensitivity of the method to find the genes that restrain flowering is 100%.