[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted...[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted microscope observation,hoechst33342 staining,flow cytometry(FCM)and wound healing assay were adopted to investigate the proliferation,morphological changes,apoptosis level and cell migration ability of human breast cancer MCF-7 cells,respectively.[Results]The morphological changes of cells in the treatment groups included gradually decreased number,reduced volume,vague cell contour,loose intercellular connection,uneven cytoplasm distribution and increased cell debris.With the increase of drug concentration,quercetin significantly inhibited the proliferation of human breast cancer MCF-7 cells(P<0.05).The number of apoptotic bodies increased gradually.When the concentration reached 100μmol/L,a large number of nuclear fragments appeared,and the level of apoptosis was statistically different(P<0.05).The mobility and migration ability of cells showed a decreasing trend,and the differences were statistically significant(P<0.05).[Conclusions]This study can provide experimental basis for clinical application of quercetin against breast cancer.展开更多
[Objectives]To establish a HPLC-MS method for the determination of polymer impurities in cefathiamidine and its preparations.[Methods]Kromasil 100-5 C_(18) column(4.6 mm ×250 mm,5μm)was used for analysis;mobile ...[Objectives]To establish a HPLC-MS method for the determination of polymer impurities in cefathiamidine and its preparations.[Methods]Kromasil 100-5 C_(18) column(4.6 mm ×250 mm,5μm)was used for analysis;mobile phase ammonium acetate solution(pH 6.30)-acetonitrile,gradient elution;volumetric flow rate 1.0 mL/min;column temperature 40℃;multi-reaction monitoring mode was used for analysis,and positive ion scanning was chosen as the electrospray ion source.[Results]The resolution between impurities and main peaks under this method was greater than 1.5,and 8 known impurities and 2 polymer impurities could be completely separated and distinguish-ed.It was inferred that the molecular ion peak[M+H]^(+):m/z727.1874,m/z 785.1937 was the possible polymer impurity of this product.[Conclusions]A method for the analysis of polymer impurities in cefathiamidine and its preparations was formed,which could achieve the purpose of simultaneous analysis of small molecule impurities and polymer impurities,and could better control the content of single impurities in the polymer,providing a reliable inspection basis for strict control of cefathiamidine quality.展开更多
[Objectives]To establish an LC-MS method for the determination of dibromoacetic acid in Cefathiamidine and Cefathiamidine for Injection.[Methods]Shiseido PC HILIC column(2.0 mm ×100 mm,3μ.m)was used.The mobile p...[Objectives]To establish an LC-MS method for the determination of dibromoacetic acid in Cefathiamidine and Cefathiamidine for Injection.[Methods]Shiseido PC HILIC column(2.0 mm ×100 mm,3μ.m)was used.The mobile phase was 0.005 Mammonium formate and the mobile phase was acetonitrile with gradient elution.The flow rate was 0.3-0.8mL/min.[Results]The limit of detection was 0.2500 ng/mL and the limit of quantification was 0.500 ng/mL,which were 2.5%and 5.0%of the impurity limits,respectively.The recov-ery rate was 103.85%.[Conclusions]This method improved the detection of dibromoacetic acid impurities in Cefathiamidine,and has that advantage of good specificity,low limit of detection and limit of quantification,high sensitivity,high accuracy,interference resistance,can meet the detection requirements of Cefathiamidine,and is suitable for the quality control of Cefathiamidine.展开更多
[Objectives]To optimize the solid-state fermentation process of Flos Sophorae Immaturus by Penicillium with Sophora japonica cv.jinhuai as raw material.[Methods]The fermentation conditions were optimized by single fac...[Objectives]To optimize the solid-state fermentation process of Flos Sophorae Immaturus by Penicillium with Sophora japonica cv.jinhuai as raw material.[Methods]The fermentation conditions were optimized by single factor experiment and response surface methodology with quercetin content as the dependent variable.[Results]According to the established model,the optimal fermentation process of Flos Sophorae Immaturus was obtained as follows:temperature 29.97℃,time 6.88 d,rotation speed 180.86 rpm,inoculation amount 3.93 mL,and the expected content of quercetin was 34.8053 mg/g.Based on this,the fermentation parameters were adjusted,and the actual content was 33.67 mg/g,which was close to the predicted value.[Conclusions]The optimization of fermentation process of Flos Sophorae Immaturus by response surface methodology provides a reference for the development and utilization of this medicinal material.展开更多
基金Guilin Scientific Research and Technology Development Program(20210202-120220104-4)Special Project of the Central Government in Guidance of Local Science and Technology Development(ZY20230102).
文摘[Objectives]To investigate the effects of quercetin extracted from flower buds of Sophora japonica cv.jinhuai on the proliferation,apoptosis and migration of human breast cancer MCF-7 cells.[Methods]MTT assay,inverted microscope observation,hoechst33342 staining,flow cytometry(FCM)and wound healing assay were adopted to investigate the proliferation,morphological changes,apoptosis level and cell migration ability of human breast cancer MCF-7 cells,respectively.[Results]The morphological changes of cells in the treatment groups included gradually decreased number,reduced volume,vague cell contour,loose intercellular connection,uneven cytoplasm distribution and increased cell debris.With the increase of drug concentration,quercetin significantly inhibited the proliferation of human breast cancer MCF-7 cells(P<0.05).The number of apoptotic bodies increased gradually.When the concentration reached 100μmol/L,a large number of nuclear fragments appeared,and the level of apoptosis was statistically different(P<0.05).The mobility and migration ability of cells showed a decreasing trend,and the differences were statistically significant(P<0.05).[Conclusions]This study can provide experimental basis for clinical application of quercetin against breast cancer.
基金Supported by2023 Central Funds for Guiding Local Science and Technology Development(ZY20230102)Guilin City Scientific Research and Technology Development Plan Project(20220104-4).
文摘[Objectives]To establish a HPLC-MS method for the determination of polymer impurities in cefathiamidine and its preparations.[Methods]Kromasil 100-5 C_(18) column(4.6 mm ×250 mm,5μm)was used for analysis;mobile phase ammonium acetate solution(pH 6.30)-acetonitrile,gradient elution;volumetric flow rate 1.0 mL/min;column temperature 40℃;multi-reaction monitoring mode was used for analysis,and positive ion scanning was chosen as the electrospray ion source.[Results]The resolution between impurities and main peaks under this method was greater than 1.5,and 8 known impurities and 2 polymer impurities could be completely separated and distinguish-ed.It was inferred that the molecular ion peak[M+H]^(+):m/z727.1874,m/z 785.1937 was the possible polymer impurity of this product.[Conclusions]A method for the analysis of polymer impurities in cefathiamidine and its preparations was formed,which could achieve the purpose of simultaneous analysis of small molecule impurities and polymer impurities,and could better control the content of single impurities in the polymer,providing a reliable inspection basis for strict control of cefathiamidine quality.
基金Supported by Central Fund for Guiding Local Science and Technology Develop-ment(ZY20230102)Guilin Scientific Research and Technology Development Plan Project(20220104-4).
文摘[Objectives]To establish an LC-MS method for the determination of dibromoacetic acid in Cefathiamidine and Cefathiamidine for Injection.[Methods]Shiseido PC HILIC column(2.0 mm ×100 mm,3μ.m)was used.The mobile phase was 0.005 Mammonium formate and the mobile phase was acetonitrile with gradient elution.The flow rate was 0.3-0.8mL/min.[Results]The limit of detection was 0.2500 ng/mL and the limit of quantification was 0.500 ng/mL,which were 2.5%and 5.0%of the impurity limits,respectively.The recov-ery rate was 103.85%.[Conclusions]This method improved the detection of dibromoacetic acid impurities in Cefathiamidine,and has that advantage of good specificity,low limit of detection and limit of quantification,high sensitivity,high accuracy,interference resistance,can meet the detection requirements of Cefathiamidine,and is suitable for the quality control of Cefathiamidine.
基金Supported by Guilin Scientific Research and Technology Development Program(20210202-1,2020011203-1,2020011203-2)Open Project of Guangxi Key Laboratory of Cancer Immunology and Microenvironment Regulation(2022KF005)+1 种基金Guangxi Science and Technology Major Project(Guike AA22096020)Fund for Central Guiding Local Science and Technology Development(ZY20230102).
文摘[Objectives]To optimize the solid-state fermentation process of Flos Sophorae Immaturus by Penicillium with Sophora japonica cv.jinhuai as raw material.[Methods]The fermentation conditions were optimized by single factor experiment and response surface methodology with quercetin content as the dependent variable.[Results]According to the established model,the optimal fermentation process of Flos Sophorae Immaturus was obtained as follows:temperature 29.97℃,time 6.88 d,rotation speed 180.86 rpm,inoculation amount 3.93 mL,and the expected content of quercetin was 34.8053 mg/g.Based on this,the fermentation parameters were adjusted,and the actual content was 33.67 mg/g,which was close to the predicted value.[Conclusions]The optimization of fermentation process of Flos Sophorae Immaturus by response surface methodology provides a reference for the development and utilization of this medicinal material.