In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricat...In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.展开更多
Ilex asprella(Hook.et Arn.)Champ.ex Benth is one of the most important traditional Chinese medicines in southern China.The seeds of Ilex asprella usually have extremely low germination due to their dormancy characteri...Ilex asprella(Hook.et Arn.)Champ.ex Benth is one of the most important traditional Chinese medicines in southern China.The seeds of Ilex asprella usually have extremely low germination due to their dormancy characteristics,which severely impacts the efficiency of seedling raising and increases labor costs.In this study,to improve the seed germination of I.asprella,the effects of germination substrate,hormone,winnowing,and stratification treatments on the seed germination of I.asprella were investigated.The results of the germination matrix showed that the highest germination percentage of 45.2%was achieved under the 20℃/10℃day/night temperature and vermiculite germination medium conditions.The results of hormone treatments revealed that 100–400 mg/L of gibberellin(GA)and 50–100 mg/L of salicylic acid(SA)were found to be effective in releasing the dormancy of I.asprella seeds.Moreover,winnowing could effectively eliminate unsaturated seeds and impurities,thus improving the seed germination of I.asprella.Furthermore,warm temperature(15℃)stratification could expand the temperature range of I.asprella’s seed germination,which was beneficial for seed germination of I.asprella and for seed nursery at room temperature in production practice.The present study obtained a method to break dormancy and increase seed germination in I.asprella,thereby forming a groundwork for improving the efficiency of large-scale planting of I.asprella.展开更多
Engineering biomaterials to meet specific biomedical applications raises high requirements of mechanical performances,and simultaneous strengthening and toughening of polymer are frequently necessary but very challeng...Engineering biomaterials to meet specific biomedical applications raises high requirements of mechanical performances,and simultaneous strengthening and toughening of polymer are frequently necessary but very challenging in many cases.In this work,we propose a new concept of nanoconcrete welding polymer chains,where mesoporous CaCO3(mCaCO_(3))nanoconcretes which are composed of amorphous and nanocrystalline phases are developed to powerfully weld polymer chains through siphoning-induced occlusion,hydration-driven crystallization and dehydration-driven compression of nanoconcretes.The mCaCO_(3) nanoconcrete welding technology is verified to be able to remarkably augment strength,toughness and anti-fatigue performances of a model polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based porous membrane.Mechanistically,we have revealed polymer-occluded nanocrystal structure and welding-derived microstress which is much stronger than interfacial Van der Waals force,thus efficiently preventing the generation of microcracks and repairing initial microcracks by microcracks-induced hydration,crystallization and polymer welding of mCaCO_(3) nanoconcretes.Constructed porous membrane is used as wound dressing,exhibiting a special nanoplates-constructed surface topography as well as a porous structure with plentiful oriented,aligned and opened pore channels,improved hydrophilicity,water vapor permeability,anti-bacterial and cell adherence,in support of wound healing and skin structural/functional repairing.The proposed nanoconcrete-welding-polymer strategy breaks a new pathway for improving the mechanical performances of polymers.展开更多
基金supported by the National Natural Science Foundation of China(22308210)the Scientific Research Program Funded by Shaanxi Provincial Education Department(23JK0350)+3 种基金the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(KFKT2021-12)the Opening Project of Key Laboratory of Leather Chemistry and Engineering(Sichuan University),Ministry of Education(2022)the RIKEN-MOST Project between the Ministry of Science and Technology of the People's Republic of China(MOST)and RIKEN,the China Scholarship Council(202108610127)the Natural Science Foundation of Shaanxi University of Science&Technology(2019BT-44).
文摘In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.
基金supported by the Fund Projects of the Central Government in Guidance of Local Science and Technology Development(GuiKeZY22096020)Natural Science Foundation of Guangxi(2019GXNSFBA245073)+1 种基金National Natural Science Foundation of China(82260750,82260749)Cooperative Project of Guangxi Botanical Garden of Medicinal Plants with China Resources Sanjiu Medical&Pharmaceutical Co.,Ltd.(202112-1).
文摘Ilex asprella(Hook.et Arn.)Champ.ex Benth is one of the most important traditional Chinese medicines in southern China.The seeds of Ilex asprella usually have extremely low germination due to their dormancy characteristics,which severely impacts the efficiency of seedling raising and increases labor costs.In this study,to improve the seed germination of I.asprella,the effects of germination substrate,hormone,winnowing,and stratification treatments on the seed germination of I.asprella were investigated.The results of the germination matrix showed that the highest germination percentage of 45.2%was achieved under the 20℃/10℃day/night temperature and vermiculite germination medium conditions.The results of hormone treatments revealed that 100–400 mg/L of gibberellin(GA)and 50–100 mg/L of salicylic acid(SA)were found to be effective in releasing the dormancy of I.asprella seeds.Moreover,winnowing could effectively eliminate unsaturated seeds and impurities,thus improving the seed germination of I.asprella.Furthermore,warm temperature(15℃)stratification could expand the temperature range of I.asprella’s seed germination,which was beneficial for seed germination of I.asprella and for seed nursery at room temperature in production practice.The present study obtained a method to break dormancy and increase seed germination in I.asprella,thereby forming a groundwork for improving the efficiency of large-scale planting of I.asprella.
基金supported by the National Natural Science Foundation of China(51872188)Shenzhen Basic Research Program(SGDX20201103093600004)+4 种基金Special Funds for the Development of Strategic Emerging Industries in Shenzhen(20180309154519685)SZU Top Ranking Project(860-00000210)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province(2018A030310573,2021A1515011155)China Postdoctoral Science Foundation(2018M643171)Center of Hydrogen Science,Shanghai Jiao Tong University,China.
文摘Engineering biomaterials to meet specific biomedical applications raises high requirements of mechanical performances,and simultaneous strengthening and toughening of polymer are frequently necessary but very challenging in many cases.In this work,we propose a new concept of nanoconcrete welding polymer chains,where mesoporous CaCO3(mCaCO_(3))nanoconcretes which are composed of amorphous and nanocrystalline phases are developed to powerfully weld polymer chains through siphoning-induced occlusion,hydration-driven crystallization and dehydration-driven compression of nanoconcretes.The mCaCO_(3) nanoconcrete welding technology is verified to be able to remarkably augment strength,toughness and anti-fatigue performances of a model polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based porous membrane.Mechanistically,we have revealed polymer-occluded nanocrystal structure and welding-derived microstress which is much stronger than interfacial Van der Waals force,thus efficiently preventing the generation of microcracks and repairing initial microcracks by microcracks-induced hydration,crystallization and polymer welding of mCaCO_(3) nanoconcretes.Constructed porous membrane is used as wound dressing,exhibiting a special nanoplates-constructed surface topography as well as a porous structure with plentiful oriented,aligned and opened pore channels,improved hydrophilicity,water vapor permeability,anti-bacterial and cell adherence,in support of wound healing and skin structural/functional repairing.The proposed nanoconcrete-welding-polymer strategy breaks a new pathway for improving the mechanical performances of polymers.