There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation.Here,we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-,double-,...There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation.Here,we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-,double-,closed-double-,triple-,and core-shell structures and different Fe/Ti molar ratios using a facile sequential templating approach.The closed-double-shelled TiO2/Fe2TiO5 hollow microspheres with 35% Fe exhibited the highest oxygen evolution reaction rate up to 375 μmol·g-1·h-1 and good stability for 5 h.The high performance can be attributed to the closed-double shell,which had more reactive sites and greater light-harvesting ability,self-supported thin shells with short charge-transfer paths,and a favorable staggered band alignment between the TiO2 and Fe2TiOs.展开更多
Binding of fluorescent molecules to the porous matrix through noncovalent interactions will synergistically expand their application spectrum. In this regard, we report an integrative self-assembly of molecule 1 with ...Binding of fluorescent molecules to the porous matrix through noncovalent interactions will synergistically expand their application spectrum. In this regard, we report an integrative self-assembly of molecule 1 with benzothiadizole and 9,9-dihexyl fluorene units, and covalent organic frameworks(COFs) via an emulsion-modulated polymerization process, within which molecules of 1 are able to interact with the scaffolds of COFs through CH-π interactions. Thus the π-πinteractions between the fluorescent molecules are largely suppressed, giving rise to their remarkable monomer-like optical properties. Of particular interest is that, given by the specific interaction between COFs and a nerve agent simulant diethyl chlorophosphite(DCP), these assembled composites show the ability of ultrasensitive detection of DCP with a detection limit of ~40 ppb. Moreover, the present integrative assembly strategy can be extended to encapsulate multiple fluorescent molecules, enabling the assemblies with white light emission. Our results highlight opportunities for the development of highly emissive porous materials by molecular selfassembly of fluorophores and molecular units of COFs.展开更多
基金This project was kindly supported by the National Science Fund for Distinguished Young Scholars (No. 21325105), National Natural Science Foundation of China (Nos. 21590795, 51572261, 51472244, 51672274, 51661165013, 51372245, and 51672276), National Key Projects for Fundamental Research and Development of China (No. 2016YFB0600903), CAS Interdisciplinary Innovation Team, and Youth Innovation Promotion Association of CAS (No. 2017070). Muhammad Waqas thank the Chinese Academy of Sciences (CAS)-the World Academy of Sciences (TWAS) President's Fellowship Programme and CAS-TWAS Postgraduate Fellowship for providing living allowance.
文摘There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation.Here,we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-,double-,closed-double-,triple-,and core-shell structures and different Fe/Ti molar ratios using a facile sequential templating approach.The closed-double-shelled TiO2/Fe2TiO5 hollow microspheres with 35% Fe exhibited the highest oxygen evolution reaction rate up to 375 μmol·g-1·h-1 and good stability for 5 h.The high performance can be attributed to the closed-double shell,which had more reactive sites and greater light-harvesting ability,self-supported thin shells with short charge-transfer paths,and a favorable staggered band alignment between the TiO2 and Fe2TiOs.
基金supported by the National Natural Science Foundation of China (21703120,21972076,51903140 and 21925604)China Postdoctoral Science Foundation (2019M662324)Taishan Scholars Program of Shandong Province (tsqn201812011)。
文摘Binding of fluorescent molecules to the porous matrix through noncovalent interactions will synergistically expand their application spectrum. In this regard, we report an integrative self-assembly of molecule 1 with benzothiadizole and 9,9-dihexyl fluorene units, and covalent organic frameworks(COFs) via an emulsion-modulated polymerization process, within which molecules of 1 are able to interact with the scaffolds of COFs through CH-π interactions. Thus the π-πinteractions between the fluorescent molecules are largely suppressed, giving rise to their remarkable monomer-like optical properties. Of particular interest is that, given by the specific interaction between COFs and a nerve agent simulant diethyl chlorophosphite(DCP), these assembled composites show the ability of ultrasensitive detection of DCP with a detection limit of ~40 ppb. Moreover, the present integrative assembly strategy can be extended to encapsulate multiple fluorescent molecules, enabling the assemblies with white light emission. Our results highlight opportunities for the development of highly emissive porous materials by molecular selfassembly of fluorophores and molecular units of COFs.