Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in thi...Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation.展开更多
Alzheimer’s disease is characterized by sustained neuroinflammation leading to memory loss and cognitive decline.The past decade has witnessed tremendous efforts in Alzheimer’s disease research;however,no effective ...Alzheimer’s disease is characterized by sustained neuroinflammation leading to memory loss and cognitive decline.The past decade has witnessed tremendous efforts in Alzheimer’s disease research;however,no effective treatment is available to prevent disease progression.An increasing body of evidence suggests that neuroinflammation plays an important role in Alzheimer’s disease pathogenesis,alongside the classical pathological hallmarks such as misfolded and aggregated proteins(e.g.,amyloid-beta and tau).Firstly,this review summarized the clinical and pathological characteristics of Alzheimer’s disease.Secondly,we outlined key aspects of glial cell-associated inflammation in Alzheimer’s disease pathogenesis and provided the latest evidence on the roles of microglia and astrocytes in Alzheimer’s disease pathology.Then,we revealed the double-edged nature of inflammatory cytokines and inflammasomes in Alzheimer’s disease.In addition,the potential therapeutic roles of innate immunity and neuroinflammation for Alzheimer’s disease were also discussed through these mechanisms.In the final section,the remaining key problems according to the current research status were discussed.展开更多
Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict contr...Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict control of protein turnover in the stem cells to achieve cell remodeling. As a highly conserved “gatekeeper” of cell homeostasis, autophagy can regulate cell remodeling by precisely controlling protein turnover in cells. Recently, it has been found that the expression of autophagy markers changes in animal models of spinal cord injury. Therefore, understanding whether autophagy can affect the fate of stem cells and promote the repair of spinal cord injury is of considerable clinical value. This review expounds the importance of autophagy homeostasis control for the repair of spinal cord injury from three aspects—pathophysiology of spinal cord injury, autophagy and stem cell function, and autophagy and stem cell function in spinal cord injury—and proposes the synergistic therapeutic effect of autophagy and stem cells in spinal cord injury.展开更多
A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is perfo...A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.展开更多
BACKGROUND Sarcomatoid intrahepatic cholangiocarcinoma(SICC)is an extremely rare and highly invasive malignant tumor of the liver.The precise pathologic mechanism of SICC has not been clearly identified,and the progno...BACKGROUND Sarcomatoid intrahepatic cholangiocarcinoma(SICC)is an extremely rare and highly invasive malignant tumor of the liver.The precise pathologic mechanism of SICC has not been clearly identified,and the prognosis is very poor.The effectiveness of the treatment strategy of radical hepatectomy combined with Huaier granules has not yet been reported.CASE SUMMARY The patient was a 69-year-old male who presented with intermittent right upper abdominal pain for one month and 4-pound weight loss before admission.Abdominal magnetic resonance imaging and magnetic resonance cholangiopancreatography showed multiple stones in the bile ducts accompanied by dilatation of the intrahepatic and extrahepatic bile ducts.The preoperative diagnoses were right intrahepatic bile duct stones and extrahepatic bile duct stones;thus,surgical resection was performed.Choledochoscopy showed that the bile duct wall of the right anterior lobe was thickened,and a mass was visible in the duct.Then,a biopsy was performed,and rapid frozen-section biopsy analysis indicated that the tumor was malignant.The final diagnosis was SICC(T1a N0M0).Huaier granules were taken by the patient as anticancer therapy after surgery.The patient attended follow-up for 72 mo with no tumor recurrence or metastasis.CONCLUSION Sarcomatous intrahepatic cholangiocarcinoma is an extremely rare,aggressive malignancy,and the diagnostic gold standard is pathological diagnosis.We reported the first case of successful treatment with Huaier granules as anticancer therapy after surgery,which indicated that Huaier granules are safe and effective.Further studies are needed to study the anticancer molecular mechanisms of Huaier granules in sarcomatous intrahepatic cholangiocarcinoma.展开更多
AIM:To investigate whether Wild Field Imaging System(WFIS SW-8000),25G endoilluminator,and intraoperative optical coherence tomography(iOCT)can perform realtime screening and diagnosing in patients with suspicious dia...AIM:To investigate whether Wild Field Imaging System(WFIS SW-8000),25G endoilluminator,and intraoperative optical coherence tomography(iOCT)can perform realtime screening and diagnosing in patients with suspicious diabetic retinopathy(DR)during phacoemulsification,especially in cases of white cataract.METHODS:A cross-sectional study was carried out.A total of 204 dense diabetic cataractous eyes of 204 patients with suspected DR treated from April 2020 to March 2021 were included.Phacoemulsification combined with intraocular lens implantation was performed.Following the removal of the lens opacity,the 25G endoilluminator,fundus photography,and iOCT were performed successively.Optical coherence tomography(OCT)and/or fundus fluorescein angiography(FFA)were used to verify the fundus findings postoperatively.Intraoperative and postoperative results were compared to verify the accuracy of intraoperative diagnosis in each group.RESULTS:Intraoperative and postoperative examinations revealed 58 and 62 eyes with DR,respectively(positive rate,28.43%and 30.39%,respectively).During the phacoemulsification,WFIS SW-8000 detected 44 eyes with DR(the detection rate,70.97%);25G endo-illuminator found 56 eyes with DR(the detection rate,90.32%);iOCT found 46 eyes with DR(the detection rate,74.19%);and 58 eyes with DR were found by combining the three methods(the detection rate,93.55%).There were statistically significant differences in the diagnostic sensitivity for DR among the methods(χ^(2)=16.36,P=0.001).CONCLUSION:WFIS SW-8000,25G endo-illuminator,iOCT,and especially their combination can be used to inspect the fundus and detect DR intraoperatively;they are helpful for the timely diagnosis and treatment of DR in patients with dense cataract.展开更多
The discovery of pressure-induced superconductivity in helimagnets(CrAs,MnP)has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity.However,...The discovery of pressure-induced superconductivity in helimagnets(CrAs,MnP)has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity.However,the nature of the magnetism and magnetic interactions that drive the unusual double-helical magnetic order in these materials remains unclear.Here,we report neutron scattering measurements of magnetic excitations in CrAs single crystals at ambient pressure.Our experiments reveal well defined spin wave excitations up to about 150 meV with a pseudogap below 7 meV,which can be effectively described by the Heisenberg model with nearest neighbor exchange interactions.Most surprisingly,the spin excitations are largely quenched above the Néel temperature,in contrast to cuprates and iron pnictides where the spectral weight is mostly preserved in the paramagnetic state.Our results suggest that the helimagnetic order is driven by strongly frustrated exchange interactions,and that CrAs is at the verge of itinerant and correlation-induced localized states,which is therefore highly pressure-tunable and favorable for superconductivity.展开更多
Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,...Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application.To that end,this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations.Then,based on a visually bibliometric analysis,the carbon capture remains a hotspot in the CCUS development.Noting that the materials applied in the carbon capture process determines its performance.As a result,the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed.Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed,and insights into the research needs such as material design,process optimization,environmental impact,and technical and economic assessments are provided.展开更多
Baicalin(BA)is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi with excellent antioxidant and anti-inflammatory biological activities.In this study,Eudragit S100 was used as the colonic tar...Baicalin(BA)is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi with excellent antioxidant and anti-inflammatory biological activities.In this study,Eudragit S100 was used as the colonic target material to prepare BA colonic targeting granules(EBCGs)based on plasticizer dry powder coating technology to improve the targeting transportation performance of BA.In vitro studies showed that EBCGs with pH-sensitive properties were successfully prepared by plasticizer dry powder coating,and in vivo animal imaging studies showed that EBCGs could deliver BA to the colon and inhibit the release of BA in the upper gastrointestinal tract(GIT).In vivo studies showed that EBCGs had good therapeutic effects in colitis,which reduced expression levels of tumor necrosis factor alpha(TNF-α)and interleukin-1β(IL-1β)and increased superoxide dismutase(SOD)activities in the colonic tissues of rats with colitis.In conclusion,Eudragit S100 could be used for the preparation of multi-unit oral colon-targeted formulations by plasticizer dry powder coating technology,and our prepared EBCGs had good colon-targeting properties,which could improve the therapeutic effect and provide a potential application for ulcerative colitis(UC).展开更多
Amorphous solids exhibit scale-free avalanches,even under small external loading,and thus can work as suitable systems to study critical behavior and universality classes.The abundance of scale-free avalanches in the ...Amorphous solids exhibit scale-free avalanches,even under small external loading,and thus can work as suitable systems to study critical behavior and universality classes.The abundance of scale-free avalanches in the entire elastic tension regime of bulk metallic glass(BMG)samples has been experimentally observed using acoustic emission(AE)measurements.In this work,we compare the statistics of avalanches with those of earthquakes,and find that they both follow the Gutenberg–Richter law in the statistics of energies and Omori’s law of aftershock rates,and share the same characteristics in the distribution of recurrence times.These resemblances encourage us to propose the term“glass-quake”to describe avalanches in elastically loaded BMGs.Furthermore,our work echoes the potential universality of critical behavior in disordered physical systems from atomic to planetary scales,and motivates the use of elastic loaded BMGs as valuable laboratory simulators of seismic dynamics.展开更多
Objective:To develop a reversed-phase high-performance liquid chromatography method for the quantification of major ginsenosides in red ginseng(RG,the steamed and dried root of the cultivar of Panax ginseng C.A.Mey).M...Objective:To develop a reversed-phase high-performance liquid chromatography method for the quantification of major ginsenosides in red ginseng(RG,the steamed and dried root of the cultivar of Panax ginseng C.A.Mey).Methods:A feasible method was developed in strict accordance with chromatographic properties of eight ginsenosides.Their contents could be unveiled with conventional external standard method,or as an alternative,using ginsenoside Rg1 as the single reference standard by means of seven conversion factors.Those parameters had been validated on different chromatographic columns and instruments.Results:Twenty-one batches of RG samples were determined.In addition,the chromatograms of RG and confusing species,including Panax ginseng,Panax quinquefolium,and Panax notoginseng,were apparently different.Conclusions:The method was proved to be efficient for the quality control of RG.展开更多
基金supported by the NSAF under Grant No.U1830206,the National Key R&D Program of China under Grant No.2017YFA0403200the National Natural Science Foundation of China under Grant Nos.11874424 and 12104507the Science and Technology Innovation Program of Hunan Province under Grant No.2021RC4026.
文摘Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation.
基金supported by the National Natural Science Foundation of China,No.81971247(to YL)Zhejiang Provincial Key R&D Plan 2020,No.2020C03064(to YL)+4 种基金Ningbo R&D Plan,No.20181ZDYF020172(to YL)National Social Science Foundation Key Programs,No.18ZDA215(to YL)the Natural Science Foundation of Zhejiang Province,No.LQ22H310001(to ZZS)the Natural Science Foundation of Ningbo,No.2021J101(to ZZS)Regular Scientific Research Project of Education Department of Zhejiang Province,No.Y202146346(to ZZS)。
文摘Alzheimer’s disease is characterized by sustained neuroinflammation leading to memory loss and cognitive decline.The past decade has witnessed tremendous efforts in Alzheimer’s disease research;however,no effective treatment is available to prevent disease progression.An increasing body of evidence suggests that neuroinflammation plays an important role in Alzheimer’s disease pathogenesis,alongside the classical pathological hallmarks such as misfolded and aggregated proteins(e.g.,amyloid-beta and tau).Firstly,this review summarized the clinical and pathological characteristics of Alzheimer’s disease.Secondly,we outlined key aspects of glial cell-associated inflammation in Alzheimer’s disease pathogenesis and provided the latest evidence on the roles of microglia and astrocytes in Alzheimer’s disease pathology.Then,we revealed the double-edged nature of inflammatory cytokines and inflammasomes in Alzheimer’s disease.In addition,the potential therapeutic roles of innate immunity and neuroinflammation for Alzheimer’s disease were also discussed through these mechanisms.In the final section,the remaining key problems according to the current research status were discussed.
基金supported by the National Natural Science Foundation of China,Nos. 32170825 and 31971108 (both to GW)。
文摘Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict control of protein turnover in the stem cells to achieve cell remodeling. As a highly conserved “gatekeeper” of cell homeostasis, autophagy can regulate cell remodeling by precisely controlling protein turnover in cells. Recently, it has been found that the expression of autophagy markers changes in animal models of spinal cord injury. Therefore, understanding whether autophagy can affect the fate of stem cells and promote the repair of spinal cord injury is of considerable clinical value. This review expounds the importance of autophagy homeostasis control for the repair of spinal cord injury from three aspects—pathophysiology of spinal cord injury, autophagy and stem cell function, and autophagy and stem cell function in spinal cord injury—and proposes the synergistic therapeutic effect of autophagy and stem cells in spinal cord injury.
基金the financial support from the National Natural Science Foundation of China (Nos. U2141215, 52105384 and 52075325)the support of Materials Genome Initiative Center, Shanghai Jiao Tong University, China。
文摘A mesoscale modeling methodology is proposed to predict the strain induced abnormal grain growth in the annealing process of deformed aluminum alloys. Firstly, crystal plasticity finite element(CPFE) analysis is performed to calculate dislocation density and stored deformation energy distribution during the plastic deformation. A modified phase field(PF) model is then established by extending the continuum field method to consider both stored energy and local interface curvature as driving forces of grain boundary migration. An interpolation mapping approach is adopted to transfer the stored energy distribution from CPFE to PF efficiently. This modified PF model is implemented to a hypothetical bicrystal firstly for verification and then the coupled CPFE-PF framework is further applied to simulating the 2D synthetic polycrystalline microstructure evolution in annealing process of deformed AA3102 aluminum alloy.Results show that the nuclei with low stored energy embedded within deformed matrix tend to grow up, and abnormal large grains occur when the deformation is close to the critical plastic strain, attributing to the limited number of recrystallized nuclei and inhomogeneity of the stored energy.
文摘BACKGROUND Sarcomatoid intrahepatic cholangiocarcinoma(SICC)is an extremely rare and highly invasive malignant tumor of the liver.The precise pathologic mechanism of SICC has not been clearly identified,and the prognosis is very poor.The effectiveness of the treatment strategy of radical hepatectomy combined with Huaier granules has not yet been reported.CASE SUMMARY The patient was a 69-year-old male who presented with intermittent right upper abdominal pain for one month and 4-pound weight loss before admission.Abdominal magnetic resonance imaging and magnetic resonance cholangiopancreatography showed multiple stones in the bile ducts accompanied by dilatation of the intrahepatic and extrahepatic bile ducts.The preoperative diagnoses were right intrahepatic bile duct stones and extrahepatic bile duct stones;thus,surgical resection was performed.Choledochoscopy showed that the bile duct wall of the right anterior lobe was thickened,and a mass was visible in the duct.Then,a biopsy was performed,and rapid frozen-section biopsy analysis indicated that the tumor was malignant.The final diagnosis was SICC(T1a N0M0).Huaier granules were taken by the patient as anticancer therapy after surgery.The patient attended follow-up for 72 mo with no tumor recurrence or metastasis.CONCLUSION Sarcomatous intrahepatic cholangiocarcinoma is an extremely rare,aggressive malignancy,and the diagnostic gold standard is pathological diagnosis.We reported the first case of successful treatment with Huaier granules as anticancer therapy after surgery,which indicated that Huaier granules are safe and effective.Further studies are needed to study the anticancer molecular mechanisms of Huaier granules in sarcomatous intrahepatic cholangiocarcinoma.
基金Supported by National Natural Science Foundation of China(No.81974129)the Technology and Science Foundation of Jiangsu Province(No.2016699)+1 种基金the Technology and Science Foundation of Nantong(No.22019012No.2019078).
文摘AIM:To investigate whether Wild Field Imaging System(WFIS SW-8000),25G endoilluminator,and intraoperative optical coherence tomography(iOCT)can perform realtime screening and diagnosing in patients with suspicious diabetic retinopathy(DR)during phacoemulsification,especially in cases of white cataract.METHODS:A cross-sectional study was carried out.A total of 204 dense diabetic cataractous eyes of 204 patients with suspected DR treated from April 2020 to March 2021 were included.Phacoemulsification combined with intraocular lens implantation was performed.Following the removal of the lens opacity,the 25G endoilluminator,fundus photography,and iOCT were performed successively.Optical coherence tomography(OCT)and/or fundus fluorescein angiography(FFA)were used to verify the fundus findings postoperatively.Intraoperative and postoperative results were compared to verify the accuracy of intraoperative diagnosis in each group.RESULTS:Intraoperative and postoperative examinations revealed 58 and 62 eyes with DR,respectively(positive rate,28.43%and 30.39%,respectively).During the phacoemulsification,WFIS SW-8000 detected 44 eyes with DR(the detection rate,70.97%);25G endo-illuminator found 56 eyes with DR(the detection rate,90.32%);iOCT found 46 eyes with DR(the detection rate,74.19%);and 58 eyes with DR were found by combining the three methods(the detection rate,93.55%).There were statistically significant differences in the diagnostic sensitivity for DR among the methods(χ^(2)=16.36,P=0.001).CONCLUSION:WFIS SW-8000,25G endo-illuminator,iOCT,and especially their combination can be used to inspect the fundus and detect DR intraoperatively;they are helpful for the timely diagnosis and treatment of DR in patients with dense cataract.
基金supported by the National Natural Science Foundation of China(Grant No.11874119)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘The discovery of pressure-induced superconductivity in helimagnets(CrAs,MnP)has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity.However,the nature of the magnetism and magnetic interactions that drive the unusual double-helical magnetic order in these materials remains unclear.Here,we report neutron scattering measurements of magnetic excitations in CrAs single crystals at ambient pressure.Our experiments reveal well defined spin wave excitations up to about 150 meV with a pseudogap below 7 meV,which can be effectively described by the Heisenberg model with nearest neighbor exchange interactions.Most surprisingly,the spin excitations are largely quenched above the Néel temperature,in contrast to cuprates and iron pnictides where the spectral weight is mostly preserved in the paramagnetic state.Our results suggest that the helimagnetic order is driven by strongly frustrated exchange interactions,and that CrAs is at the verge of itinerant and correlation-induced localized states,which is therefore highly pressure-tunable and favorable for superconductivity.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LDT23E0601)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(China)(No.2022C03146)+1 种基金the National Natural Science Foundation of China(Nos.U23A20677 and 22022610)the National Funded Postdoctoral Researcher Program of China(No.GZC20232363).
文摘Carbon capture,utilization and storage(CCUS)technologies play an essential role in achieving Net Zero Emissions targets.Considering the lack of timely reviews on the recent advancements in promising CCUS technologies,it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application.To that end,this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations.Then,based on a visually bibliometric analysis,the carbon capture remains a hotspot in the CCUS development.Noting that the materials applied in the carbon capture process determines its performance.As a result,the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed.Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed,and insights into the research needs such as material design,process optimization,environmental impact,and technical and economic assessments are provided.
基金supported by Outstanding Youth Foundation of Jiangxi Province(grant No.20224ACB216019)Natural Science Foundation of Jiangxi Province(grant Nos.20202BABL206151 and 20202BABL216026)+2 种基金Doctoral startup fund of Jiangxi Science and Technology Normal University(grant No.2019BSQD015)Department Education Science and Technology Research Project of Jiangxi(grant No.GJ201134)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(grant No.JKD-KF-2104).
文摘Baicalin(BA)is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi with excellent antioxidant and anti-inflammatory biological activities.In this study,Eudragit S100 was used as the colonic target material to prepare BA colonic targeting granules(EBCGs)based on plasticizer dry powder coating technology to improve the targeting transportation performance of BA.In vitro studies showed that EBCGs with pH-sensitive properties were successfully prepared by plasticizer dry powder coating,and in vivo animal imaging studies showed that EBCGs could deliver BA to the colon and inhibit the release of BA in the upper gastrointestinal tract(GIT).In vivo studies showed that EBCGs had good therapeutic effects in colitis,which reduced expression levels of tumor necrosis factor alpha(TNF-α)and interleukin-1β(IL-1β)and increased superoxide dismutase(SOD)activities in the colonic tissues of rats with colitis.In conclusion,Eudragit S100 could be used for the preparation of multi-unit oral colon-targeted formulations by plasticizer dry powder coating technology,and our prepared EBCGs had good colon-targeting properties,which could improve the therapeutic effect and provide a potential application for ulcerative colitis(UC).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51801122 and 52071210)the Science Challenge Project(Grant No.TZ2018001)the Science and Technology Commission of Shanghai(Grant No.21ZR1430800).
文摘Amorphous solids exhibit scale-free avalanches,even under small external loading,and thus can work as suitable systems to study critical behavior and universality classes.The abundance of scale-free avalanches in the entire elastic tension regime of bulk metallic glass(BMG)samples has been experimentally observed using acoustic emission(AE)measurements.In this work,we compare the statistics of avalanches with those of earthquakes,and find that they both follow the Gutenberg–Richter law in the statistics of energies and Omori’s law of aftershock rates,and share the same characteristics in the distribution of recurrence times.These resemblances encourage us to propose the term“glass-quake”to describe avalanches in elastically loaded BMGs.Furthermore,our work echoes the potential universality of critical behavior in disordered physical systems from atomic to planetary scales,and motivates the use of elastic loaded BMGs as valuable laboratory simulators of seismic dynamics.
基金supported by the National Natural Science Foundation of China(No.81530095,81673591)。
文摘Objective:To develop a reversed-phase high-performance liquid chromatography method for the quantification of major ginsenosides in red ginseng(RG,the steamed and dried root of the cultivar of Panax ginseng C.A.Mey).Methods:A feasible method was developed in strict accordance with chromatographic properties of eight ginsenosides.Their contents could be unveiled with conventional external standard method,or as an alternative,using ginsenoside Rg1 as the single reference standard by means of seven conversion factors.Those parameters had been validated on different chromatographic columns and instruments.Results:Twenty-one batches of RG samples were determined.In addition,the chromatograms of RG and confusing species,including Panax ginseng,Panax quinquefolium,and Panax notoginseng,were apparently different.Conclusions:The method was proved to be efficient for the quality control of RG.