New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhi...New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhibit a broader range of morphological diversity,locomotion capabilities,and enhanced operational capacities.Therefore,this study defines aerial robots with the four characteristics of morphability,biomimicry,multi-modal locomotion,and manipulator attachment as NTARs.Subsequently,this paper discusses the latest research progress in the materials and manufacturing technology,actuation technology,and perception and control technology of NTARs.Thereafter,the research status of NTAR systems is summarized,focusing on the frontier development and application cases of flapping-wing microair vehicles,perching aerial robots,amphibious robots,and operational aerial robots.Finally,the main challenges presented by NTARs in terms of energy,materials,and perception are analyzed,and the future development trends of NTARs are summarized in terms of size and endurance,mechatronics,and complex scenarios,providing a reference direction for the follow-up exploration of NTARs.展开更多
This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The pr...This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target.展开更多
In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve...In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.展开更多
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ...Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.展开更多
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat...Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee...To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.展开更多
Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing rea...Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment.This paper aims to address the local minimum problem by employing the proposed boundary gap(BG)based reactive navigation method.Specifically,the narrowest gap extraction algorithm(NGEA)is proposed to eliminate the improper gaps.Meanwhile,we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima.Moreover,in order to enhance the smoothness of generated trajectories,we take the robot dynamics into consideration by using the modified dynamic window approach(DWA).Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.展开更多
Dear editor,This letter presents an automatic data augmentation algorithm for medical image segmentation.To increase the scale and diversity of medical images,we propose a differentiable automatic data augmentation al...Dear editor,This letter presents an automatic data augmentation algorithm for medical image segmentation.To increase the scale and diversity of medical images,we propose a differentiable automatic data augmentation algorithm based on proximal update by finding an optimal augmentation policy.Specifically,on the one hand,a dedicated search space is designed for the medical image segmentation task.On the other hand,we introduce a proximal differentiable gradient descent strategy to update the data augmentation policy,which would increase the searching efficiency.Results of the experiments indicate that the proposed algorithm significantly outperforms state-of-the-art methods,and search speed is 10 times faster than state-of-the-art methods.展开更多
Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic alg...Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic algorithm with resampling method is adopted to obtain reducts with good generalization ability. Second, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the neural network ensemble with best generalization ability can be found by search strategies. Finally, classification based on neural network ensemble is implemented by combining the predictions of component networks with voting. The method has been verified in the experiment of remote sensing image and five UCI datasets classification. Compared with conventional ensemble feature selection algorithms, it costs less time and lower computing complexity, and the classification accuracy is satisfactory.展开更多
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor...The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.展开更多
A novel probabilistic fuzzy control system is proposed to treat the congestion avoidance problem in transmission control protocol (TCP) networks. Studies on traffic measurement of TCP networks have shown that the pa...A novel probabilistic fuzzy control system is proposed to treat the congestion avoidance problem in transmission control protocol (TCP) networks. Studies on traffic measurement of TCP networks have shown that the packet traffic exhibits long range dependent properties called self-similarity, which degrades the network performance greatly. The probabilistic fuzzy control (PFC) system is used to handle the complex stochastic features of self-similar traffic and the modeling uncertainties in the network system. A three-dimensional (3-D) membership function (MF) is embedded in the PFC to express and describe the stochastic feature of network traffic. The 3-D MF has extended the traditional fuzzy planar mapping and further provides a spatial mapping among "fuzziness-randomness-state". The additional stochastic expression of 3-D MF provides the PFC an additional freedom to handle the stochastic features of self-similar traffic. Simulation experiments show that the proposed control method achieves superior performance compared to traditional control schemes in a stochastic environment.展开更多
This paper presents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision positi...This paper presents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision position tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of single-input CMAC will also be self-organized;that is, the layers of single-input CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The online tuning laws of single-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov function is applied to determine the learning rates of the proposed control system so that the stability of the system can be guaranteed. The simulation results of three-link De-icing robot manipulator are provided to verify the effectiveness of the proposed control methodology.展开更多
A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique int...A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.展开更多
In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building...In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design.展开更多
In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying t...In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results.展开更多
This paper proposes an idea for modeling and con-trol of a V2G charging station(CS)for electric vehicles(EVs)by using synchronverter technology.First,the architecture of the CS is introduced.Then,a T-S fuzzy controlle...This paper proposes an idea for modeling and con-trol of a V2G charging station(CS)for electric vehicles(EVs)by using synchronverter technology.First,the architecture of the CS is introduced.Then,a T-S fuzzy controller is designed to decide the reference real power of the synchronverter by considering the grid frequency.Due to the inner frequency-and voltage-drooping mechanisms of the synchronverter,the input and output real and reactive power of the CS will be automatically adjusted on the basis of the reference value according to the degree of deviation from the nominal value of the grid frequency and voltage.To ensure the safety of this operation,an adaptive frequency droop coefficient mechanism is designed to adapt the change of the total energy storage of a CS unit by changing the slope of the P-f control characteristic of the synchronverter.The performance of the CS with the proposed control strategy is investigated with EVs of different battery states,different users’sets and under different grid status.Simulation results demonstrate that the proposed strategy can not only effectively perform controlled charging/discharging of each single electric vehicle inside the CS,but also improve the performance of the electricity grid in terms of efficiency,stability and reliability.展开更多
Target tracking plays an important role in the construction,operation,and maintenance of the space station by the robot,which puts forward high requirements on the accuracy of target tracking.However,the special space...Target tracking plays an important role in the construction,operation,and maintenance of the space station by the robot,which puts forward high requirements on the accuracy of target tracking.However,the special space environment may cause complex non-Gaussian noise in target tracking data.And the performance of traditional Kalman Filter will deteriorate seriously when the error signals are non-Gaussian,which may lead to mission failure.In the paper,a novel Kalman Filter algorithm with Generalized Maximum Correntropy Criterion(GMCKF)is proposed to improve the tracking accuracy with non-Gaussian noise.The GMCKF algorithm,which replaces the default Gaussian kernel with the generalized Gaussian density function as kernel,can adapt to multi-type non-Gaussian noises and evaluate the noise accurately.A parameter automatic selection algorithm is proposed to determine the shape parameter of GMCKF algorithm,which helps the GMCKF algorithm achieve better performance for complex non-Gaussian noise.The performance of the proposed algorithm has been evaluated by simulations and the ground experiments.Then,the algorithm has been applied in the maintenance experiments in TianGong-2 space laboratory of China.The results validated the feasibility of the proposed method with the target tracking precision improved significantly in complex non-Gaussian environment.展开更多
基金supported in part by the National Key Research and Development Program of China(2022YFB4701800 and 2021ZD0114503)the National Natural Science Foundation of China(62103140,U22A2057,62173132,and 62133005)+3 种基金the Hunan Leading Talent of Technological Innovation(2022RC3063)the Top Ten Technical Research Projects of Hunan Province(2024GK1010)the Key Research and Development Program of Hunan Province(2023GK2068)the Science and Technology Innovation Program of Hunan Province(2023RC1049).
文摘New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhibit a broader range of morphological diversity,locomotion capabilities,and enhanced operational capacities.Therefore,this study defines aerial robots with the four characteristics of morphability,biomimicry,multi-modal locomotion,and manipulator attachment as NTARs.Subsequently,this paper discusses the latest research progress in the materials and manufacturing technology,actuation technology,and perception and control technology of NTARs.Thereafter,the research status of NTAR systems is summarized,focusing on the frontier development and application cases of flapping-wing microair vehicles,perching aerial robots,amphibious robots,and operational aerial robots.Finally,the main challenges presented by NTARs in terms of energy,materials,and perception are analyzed,and the future development trends of NTARs are summarized in terms of size and endurance,mechatronics,and complex scenarios,providing a reference direction for the follow-up exploration of NTARs.
基金supported in part by the National Key Research and Development Program of China(2021ZD0114503,2022YFB4701800,and 2021YFB1714700)the National Natural Science Foundation of China(62273098,62027810,61971071,62133005,62273138,and 62103140)+9 种基金the Major Research Plan of the National Natural Science Foundation of China(92148204)the Newton International Fellowships 2022 funded by the Royal Society,UK(NIF\R1\221089)Hunan Leading Talent of Technological Innovation(2022RC3063)Hunan Science Fund for Distinguished Young Scholars(2021JJ10025)the Hunan Key Research and Development Program(2021GK4011 and 2022GK2011)the Changsha Science and Technology Major Project(kh2003026)the Natural Science Foundation of Hunan Province(2021JJ20029 and 2021JJ40124)the Science and Technology Innovation Program of Hunan Province(2021RC3060)the Joint Open Foundation of the State Key Laboratory of Robotics(2021-KF-22-17)the China University Industry-University-Research Innovation Fund(2020HYA06006).
文摘This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target.
基金supported in part by National Natural Science Foundation of China(62106230,U23A20340,62376253,62176238)China Postdoctoral Science Foundation(2023M743185)Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications Open Fundation(BDIC-2023-A-007)。
文摘In multimodal multiobjective optimization problems(MMOPs),there are several Pareto optimal solutions corre-sponding to the identical objective vector.This paper proposes a new differential evolution algorithm to solve MMOPs with higher-dimensional decision variables.Due to the increase in the dimensions of decision variables in real-world MMOPs,it is diffi-cult for current multimodal multiobjective optimization evolu-tionary algorithms(MMOEAs)to find multiple Pareto optimal solutions.The proposed algorithm adopts a dual-population framework and an improved environmental selection method.It utilizes a convergence archive to help the first population improve the quality of solutions.The improved environmental selection method enables the other population to search the remaining decision space and reserve more Pareto optimal solutions through the information of the first population.The combination of these two strategies helps to effectively balance and enhance conver-gence and diversity performance.In addition,to study the per-formance of the proposed algorithm,a novel set of multimodal multiobjective optimization test functions with extensible decision variables is designed.The proposed MMOEA is certified to be effective through comparison with six state-of-the-art MMOEAs on the test functions.
基金Hunan Provincial Natural Science Foundation of China (No. 06JJ50103)the National Natural Science Foundationof China (No. 60375001)
文摘Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.
基金This work was supported by the National Natural Science Foundation of China(No.60375001)the High School Doctoral Foundation of China(NO.20030532004).
文摘Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.706043)Hunan Provincial Natural Science Foundation of China (No.06JJ50121)the National Natural Science Foundation of China (No.60775047).
文摘To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.
基金supported in part by the National Natural Science Foundation of China(61922076,61873252)in part by the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China(161059)。
文摘Due to the requirements for mobile robots to search or rescue in unknown environments,reactive navigation which plays an essential role in these applications has attracted increasing interest.However,most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment.This paper aims to address the local minimum problem by employing the proposed boundary gap(BG)based reactive navigation method.Specifically,the narrowest gap extraction algorithm(NGEA)is proposed to eliminate the improper gaps.Meanwhile,we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima.Moreover,in order to enhance the smoothness of generated trajectories,we take the robot dynamics into consideration by using the modified dynamic window approach(DWA).Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.
基金This work was supported by the National Natural Science Foundation of China(62073126)the Hunan Provincial Natural Science Foundation of China(2020JJ2008)+1 种基金the Key Research and Development Program of Hunan Province(2022WK2011)the Science and Technology Program of Changsha(897202102345).
文摘Dear editor,This letter presents an automatic data augmentation algorithm for medical image segmentation.To increase the scale and diversity of medical images,we propose a differentiable automatic data augmentation algorithm based on proximal update by finding an optimal augmentation policy.Specifically,on the one hand,a dedicated search space is designed for the medical image segmentation task.On the other hand,we introduce a proximal differentiable gradient descent strategy to update the data augmentation policy,which would increase the searching efficiency.Results of the experiments indicate that the proposed algorithm significantly outperforms state-of-the-art methods,and search speed is 10 times faster than state-of-the-art methods.
基金supported by the National High-Tech Research and Development Plan of China (No.2007AA04Z224)the National Natural Science Foundation of China (No.60775047, 60835004)
文摘Neural network ensemble based on rough sets reduct is proposed to decrease the computational complexity of conventional ensemble feature selection algorithm. First, a dynamic reduction technology combining genetic algorithm with resampling method is adopted to obtain reducts with good generalization ability. Second, Multiple BP neural networks based on different reducts are built as base classifiers. According to the idea of selective ensemble, the neural network ensemble with best generalization ability can be found by search strategies. Finally, classification based on neural network ensemble is implemented by combining the predictions of component networks with voting. The method has been verified in the experiment of remote sensing image and five UCI datasets classification. Compared with conventional ensemble feature selection algorithms, it costs less time and lower computing complexity, and the classification accuracy is satisfactory.
基金supported by the National Natural Science Foundation of China(6077504760835004)+2 种基金the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)the Graduate Innovation Fundation of Hunan Province(CX2010B132)
文摘The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.
基金supported by the National Natural Science Foundation of China (U0735003,60604006)Natural Science Foundation of Guangdong Province (8351009001000002,6021452)
文摘A novel probabilistic fuzzy control system is proposed to treat the congestion avoidance problem in transmission control protocol (TCP) networks. Studies on traffic measurement of TCP networks have shown that the packet traffic exhibits long range dependent properties called self-similarity, which degrades the network performance greatly. The probabilistic fuzzy control (PFC) system is used to handle the complex stochastic features of self-similar traffic and the modeling uncertainties in the network system. A three-dimensional (3-D) membership function (MF) is embedded in the PFC to express and describe the stochastic feature of network traffic. The 3-D MF has extended the traditional fuzzy planar mapping and further provides a spatial mapping among "fuzziness-randomness-state". The additional stochastic expression of 3-D MF provides the PFC an additional freedom to handle the stochastic features of self-similar traffic. Simulation experiments show that the proposed control method achieves superior performance compared to traditional control schemes in a stochastic environment.
文摘This paper presents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision position tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of single-input CMAC will also be self-organized;that is, the layers of single-input CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The online tuning laws of single-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov function is applied to determine the learning rates of the proposed control system so that the stability of the system can be guaranteed. The simulation results of three-link De-icing robot manipulator are provided to verify the effectiveness of the proposed control methodology.
基金supported by the National Natural Science Foundation of China(Nos.60835004,61175075)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2012B147)
文摘A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.
基金supported by the National Natural Science Foundation of China (Nos. 61203309, 61104088, 60835004)the Scientific Research Fund of Hunan Provincial Education Department (No. 12B043)+2 种基金the Natural Science Foundation of Hunan Province (No. 10JJ9007)the Industry-University-Research Combination Innovation Platform of Hunan Province (No. 2010XK6066)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design.
基金supported by the National Natural Science Foundation of China(Nos.6117075,60835004)the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA111004,2012AA112312)
文摘In this paper, an adaptive backstepping fuzzy cerebellar-model-articulation-control neural-networks control (ABFCNC) system for motion/force control of the mobile-manipulator robot (MMR) is proposed. By applying the ABFCNC in the tracking-position controller, the unknown dynamics and parameter variation problems of the MMR control system are relaxed. In addition, an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors, uncertain disturbances. Based on the tracking position-ABFCNC design, an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR. The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem. Therefore, the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system. The effectiveness and robustness of the proposed control system are verified by comparative simulation results.
基金This work was supported in part by the National Key Research and Development Program of China(No.2018YFB0904000 and No.2018YFB0904003)and National Natural Science Foundation of China(No.51807013 and No.51807011).
文摘This paper proposes an idea for modeling and con-trol of a V2G charging station(CS)for electric vehicles(EVs)by using synchronverter technology.First,the architecture of the CS is introduced.Then,a T-S fuzzy controller is designed to decide the reference real power of the synchronverter by considering the grid frequency.Due to the inner frequency-and voltage-drooping mechanisms of the synchronverter,the input and output real and reactive power of the CS will be automatically adjusted on the basis of the reference value according to the degree of deviation from the nominal value of the grid frequency and voltage.To ensure the safety of this operation,an adaptive frequency droop coefficient mechanism is designed to adapt the change of the total energy storage of a CS unit by changing the slope of the P-f control characteristic of the synchronverter.The performance of the CS with the proposed control strategy is investigated with EVs of different battery states,different users’sets and under different grid status.Simulation results demonstrate that the proposed strategy can not only effectively perform controlled charging/discharging of each single electric vehicle inside the CS,but also improve the performance of the electricity grid in terms of efficiency,stability and reliability.
基金The authors would like to acknowledge the National Key Research and Development Program of China(2018YFB1305300)the National Natural Science Foundation of China(Grant Nos.62103141,61733001,61873039,U1713215,U1913211,U2013602)the China Postdoctoral Science Foundation of China(2021M690963)for their support and funding of this paper.
文摘Target tracking plays an important role in the construction,operation,and maintenance of the space station by the robot,which puts forward high requirements on the accuracy of target tracking.However,the special space environment may cause complex non-Gaussian noise in target tracking data.And the performance of traditional Kalman Filter will deteriorate seriously when the error signals are non-Gaussian,which may lead to mission failure.In the paper,a novel Kalman Filter algorithm with Generalized Maximum Correntropy Criterion(GMCKF)is proposed to improve the tracking accuracy with non-Gaussian noise.The GMCKF algorithm,which replaces the default Gaussian kernel with the generalized Gaussian density function as kernel,can adapt to multi-type non-Gaussian noises and evaluate the noise accurately.A parameter automatic selection algorithm is proposed to determine the shape parameter of GMCKF algorithm,which helps the GMCKF algorithm achieve better performance for complex non-Gaussian noise.The performance of the proposed algorithm has been evaluated by simulations and the ground experiments.Then,the algorithm has been applied in the maintenance experiments in TianGong-2 space laboratory of China.The results validated the feasibility of the proposed method with the target tracking precision improved significantly in complex non-Gaussian environment.