期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize
1
作者 Peng Liu Langlang Ma +8 位作者 Siyi Jian Yao He Guangsheng Yuan Fei Ge Zhong Chen Chaoying Zou Guangtang Pan Thomas Lübberstedt yaou shen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2178-2195,共18页
Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,... Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,we performed genomic sequencing for 80 core maize germplasms and constructed a high-density genomic variation map using our newly developed pipeline(MQ2Gpipe).Based on the induction rate of EC(REC),these inbred lines were categorized into three subpopulations.The low-REC germplasms displayed more abundant genetic diversity than the high-REC germplasms.By integrating a genome-wide selective signature screen and region-based association analysis,we revealed 95.23 Mb of selective regions and 43 REC-associated variants.These variants had phenotypic variance explained values ranging between 21.46 and 49.46%.In total,103 candidate genes were identified within the linkage disequilibrium regions of these REC-associated loci.These genes mainly participate in regulation of the cell cycle,regulation of cytokinesis,and other functions,among which MYB15 and EMB2745 were located within the previously reported QTL for EC induction.Numerous leaf area-associated variants with large effects were closely linked to several REC-related loci,implying a potential synergistic selection of REC and leaf size during modern maize breeding. 展开更多
关键词 MAIZE genetic transformation embryonic callus selective signal association analysis
下载PDF
Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize 被引量:2
2
作者 Xiao Zhang Zhiyong Ren +15 位作者 Bowen Luo Haixu Zhong Peng Ma Hongkai Zhang Hongmei Hu Yikai Wang Haiying Zhang Dan Liu Ling Wu Zhi Nie Yonghui Zhu Wenzhu He Suzhi Zhang Shunzong Su yaou shen Shibin Gao 《The Crop Journal》 SCIE CSCD 2022年第2期436-446,共11页
The study of yield traits can reveal the genetic architecture of grain yield for improving maize production.In this study, an association panel comprising 362 inbred lines and a recombinant inbred line population deri... The study of yield traits can reveal the genetic architecture of grain yield for improving maize production.In this study, an association panel comprising 362 inbred lines and a recombinant inbred line population derived from X178 × 9782 were used to identify candidate genes for nine yield traits. High-priority overlap(HPO) genes, which are genes prioritized in a genome-wide association study(GWAS), were investigated using coexpression networks. The GWAS identified 51 environmentally stable SNPs in two environments and 36 pleiotropic SNPs, including three SNPs with both attributes. Seven hotspots containing 41 trait-associated SNPs were identified on six chromosomes by permutation. Pyramiding of superior alleles showed a highly positive effect on all traits, and the phenotypic values of ear diameter and ear weight consistently corresponded with the number of superior alleles in tropical and temperate germplasm. A total of 61 HPO genes were detected after trait-associated SNPs were combined with the coexpression networks. Linkage mapping identified 16 environmentally stable and 16 pleiotropic QTL.Seven SNPs that were located in QTL intervals were assigned as consensus SNPs for the yield traits.Among the candidate genes predicted by our study, some genes were confirmed to function in seed development. The gene Zm00001 d016656 encoding a serine/threonine protein kinase was associated with five different traits across multiple environments. Some genes were uniquely expressed in specific tissues and at certain stages of seed development. These findings will provide genetic information and resources for molecular breeding of maize grain yield. 展开更多
关键词 MAIZE Yield traits Genome-wide association study(GWAS) Quantitative trait locus(QTL) Coexpression networks
下载PDF
Genome assembly of the maize inbred line A188 provides a new reference genome for functional genomics 被引量:2
3
作者 Fei Ge Jingtao Qu +8 位作者 Peng Liu Lang Pan Chaoying Zou Guangsheng Yuan Cong Yang Guangtang Pan Jianwei Huang Langlang Ma yaou shen 《The Crop Journal》 SCIE CSCD 2022年第1期47-55,共9页
The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genoty... The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genotype and phenotype in maize.Here we describe the genome sequence and annotation of A188,a maize inbred line with high phenotypic variation relative to other lines,acquired by single-molecule sequencing and optical genome mapping.We assembled a 2210-Mb genome with a scaffold N50 size of 11.61 million bases(Mb),compared to 9.73 Mb for B73 and 10.2 Mb for Mo17.Based on the B73_Ref Gen_V4 genome,295 scaffolds(2084.35 Mb,94.30%of the final genome assembly)were anchored and oriented on ten chromosomes.Comparative analysis revealed that~30%of the predicted A188 genes showed large structural divergence from B73,Mo17,and W22 genomes,which causes high protein divergence and may lead to phenotypic variation among the four inbred lines.As a line with high embryonic callus(EC)induction capacity,A188 provides a convenient tool for elucidating the molecular mechanism underlying the formation of EC in maize.Combining our new A188 genome with previously reported QTL and RNA sequencing data revealed eight genes with large structural variation and two differentially expressed genes playing potential roles in maize EC induction. 展开更多
关键词 MAIZE Embryonic callus A188 Genome assembly Single-molecule sequencing
下载PDF
Association mapping for root system architecture traits under two nitrogen conditions in germplasm enhancement of maize doubled haploid lines 被引量:1
4
作者 Langlang Ma Chunyan Qing +2 位作者 Ursula Frei yaou shen Thomas Lübberstedt 《The Crop Journal》 SCIE CAS CSCD 2020年第2期213-226,共14页
Root system architecture(RSA)contributes to nitrogen(N)uptake and utilization in maize.In this study,a germplasm enhancement of maize double haploid population of 226 lines genotyped with 61,634 SNPs was used to inves... Root system architecture(RSA)contributes to nitrogen(N)uptake and utilization in maize.In this study,a germplasm enhancement of maize double haploid population of 226 lines genotyped with 61,634 SNPs was used to investigate the genetic basis of RSA under two N levels using a genome-wide association study(GWAS).GLM+PCA,FarmCPU,and MLM models were utilized to balance false positives and false negatives.In total,33 and 51 significant SNP-trait associations were detected under high and low N conditions,respectively.Under high N,SNP S9_2483543 was detected by all models.Linkage disequilibrium(LD)regions of some SNPs overlapped with the intervals of QTL for RSA and N response that were detected in previous studies.In particular,several known genes,Rtcs,Rtcl,Rtcl,and Ms44,were located in the LD regions of S1_9992325,S9_151726472,S9_154381179,and S4_197073985,respectively.Among the candidate genes identified by this study,GRMZM2G139811,GRMZM2G314898,GRMZM2G054050,GRMZM2G173682,GRMZM2G470914,GRMZM2G462325,GRMZM2G416184,and GRMZM2G064302 were involved in seedling,seed,and root system development or N metabolism in Arabidopsis or rice.The markers identified in this study can be used for marker-assisted selection of RSA traits to improve nitrogen use efficiency in maize breeding,and the candidate genes will contribute to further understanding of the genetic basis of RSA under diverse N conditions. 展开更多
关键词 GERMPLASM BREEDING SEEDLING
下载PDF
Identification and functional analysis of miRNAs in developing kernels of a viviparous mutant in maize
5
作者 Haiping Ding Jian Gao +7 位作者 Mao Luo Hua Peng Haijian Lin Guangsheng Yuan yaou shen Maojun Zhao Guangtang Pan Zhiming Zhang 《The Crop Journal》 SCIE CAS 2013年第2期115-126,共12页
Given the important roles of miRNAs in post-transcriptional gene regulation, identification of differentially expressed miRNAs will facilitate the elucidation of molecular mechanisms underlying kernel development. In ... Given the important roles of miRNAs in post-transcriptional gene regulation, identification of differentially expressed miRNAs will facilitate the elucidation of molecular mechanisms underlying kernel development. In this study, we constructed a small RNA library to comprehensively represent the full complement of individual small RNAs and to characterize miRNA expression profiles in pooled ears of maize(Zea mays L.) at 10, 15,20, 22, 25 and 30 days after pollination(DAP). At least 21 miRNAs were differentially expressed. The differential expression of three of these miRNAs, i.e., miR528a, miR167a and miR160b, at each stage was verified by qRT-PCR. The results indicated that these miRNAs might be involved in kernel development. In addition, the predicted functions of target genes indicated that most of the target genes are involved in signal transduction and cell communication pathways, particularly the auxin signaling pathway. The expression of candidate germination-associated miRNAs was analyzed by hybridization to a maize genome microarray, and revealed differential expression of genes involved in plant hormone signaling pathways. This finding suggests that phytohormones play a critical role in the development of maize kernels. We found that in combination with other miRNAs, miR528a regulated a putative laccase, a Ring-H2 zinc finger protein and a MADS box-like protein, whereas miR167a and miR160b regulated multiple target genes,including ARF(auxin response factor), a member of the B3 transcription factor family. All three miRNAs are important for ear germination, development and physiology. The small RNA transcriptomes and mRNA obtained in this study will help us gain a betterunderstanding of the expression and function of small RNAs in the development of maize kernel. 展开更多
关键词 Ear germination-associated MIRNAS Microarray hybridization qRT-PCR ZEA mays
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部