期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:2
1
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang yaqi chen cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition Orbitals hybridization Water splitting
下载PDF
Viability of all-solid-state lithium metal battery coupled with oxide solid-state electrolyte and high-capacity cathode
2
作者 Xingxing Jiao Xieyu Xu +6 位作者 Yongjing Wang Xuyang Wang yaqi chen Shizhao Xiong Weiqing Yang Zhongxiao Song Yangyang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期122-131,共10页
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a... Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety. 展开更多
关键词 All-solid-state lithium metal battery LiNi_(0.5C)o_(0.2)Mn_(0.3)O_(2)-Li7La_(3)Zr_(2)O_(12)composite cathode CO-SINTERING Lithium metal anode Electro-chemo-mechanical failure
下载PDF
Electro-chemo-mechanical design of polymer matrix in composited LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode endows solid-state batteries with superior performance
3
作者 Haolong Jiang Xieyu Xu +15 位作者 Qingpeng Guo Hui Wang Jiayi Zheng Yuhao Zhu Huize Jiang Olesya O.Kapitanova Valentyn S.Volkov Jialin Wang yaqi chen Yongjing Wang Yu Han Chunman Zheng Kai Xie Shizhao Xiong Yangyang Liu Xingxing Jiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期277-282,I0009,共7页
Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode material has been widely concerned due to its high voltage,high specific capacity and excellent rate performance,which is considered as one of the most promi... Nickel-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode material has been widely concerned due to its high voltage,high specific capacity and excellent rate performance,which is considered as one of the most promising cathode materials for the next generation of high-energy-density solid-state lithium batteries.However,serious electro-chemo-mechanical degradation of Nickel-rich cathode during cycling,especially at a high voltage(over 4.5 V),constrains their large-scale application.Here,using the multiphysical simulation,highly-conductive polymer matrix with spontaneous stress-buffering effect was uncovered theoretically for reinforcing the electrochemical performance of composited NCM81 1 cathode through the visualization of uniform concentration distribution of Li-ion coupled with improved stress field inside NCM811 cathode.Thereupon,polyacrylonitrile(PAN) and soft polyvinylidene fluoride(PVDF) were selected as the polymer matrix to fabricate the composited NCM811 cathode(PVDFPAN@NCM811) for improving the electrochemical performance of the solid-state NMC811|Li full cells,which can maintain high capacity over 146.2 mA h g^(-1)after 200 cycles at a high voltage of 4.5 V.Suggestively,designing a multifunctional polymer matrix with high ionic conductivity and mechanical property can buffer the stress and maintain the integrity of the structure,which can be regarded as the door-opening avenue to realize the high electrochemical performance of Ni-rich cathode for solidstate batteries. 展开更多
关键词 Ni-rich cathode Solid-state batteries Interfacial modification in electro-chemo-mechanics Multi-physical simulation
下载PDF
Dependence of the Structure, Optical Phonon Modes and Dielectric Properties on Pressure in Wurtzite GaN and AlN
4
作者 Huanyou Wang yaqi chen +1 位作者 Yalan Li Xiangyan He 《Advances in Materials Physics and Chemistry》 2015年第8期316-324,共9页
The density functional perturbation theory (DFPT) is employed to study the structure, optical phonon modes and dielectric properties for wurtzite GaN and AlN under hydrostatic pressure. In order to calculate accuratel... The density functional perturbation theory (DFPT) is employed to study the structure, optical phonon modes and dielectric properties for wurtzite GaN and AlN under hydrostatic pressure. In order to calculate accurately the Born effective charges and high frequency dielectric tensors, we utilize two sum rules to monitor this calculation. The calculated optical phonon frequencies and longitudinal-transverse splitting show an increasing with pressure, whereas the Born effective charges and high frequency dielectric tensors are found to decrease with pressure. In particular, we analysed the reason for discrepancy between this calculation and previous experimental determination of pressure dependence of the LO-TO splitting in AlN. The different pressure behavior of the structural and lattice-dynamical properties of GaN and AlN is discussed in terms of the strengths of the covalent bonds and crystal anisotropy. Our results regarding dielectric Grüneisen parameter are predictions and may serve as a reference. 展开更多
关键词 GAN ALN LATTICE Dynamics DIELECTRIC PRESSURE
下载PDF
High-precision nondestructive evaluation of a thermal barrier coating based on perovskite quantum dot anion exchange
5
作者 Tao Han Shufang Ding +6 位作者 Zifan Wang Sirong Jiang Pengjiang Jing Tianshang Yi yaqi chen Chunzhi Jiang Xiaofeng Zhang 《Nano Research》 SCIE EI CSCD 2024年第5期4582-4592,共11页
Thermal barrier coatings(TBCs)in gas turbine engines are used in expressly harsh environments;thus,assessing TBC integrity status is critical for safety and reliability.However,traditional periodic maintenance involve... Thermal barrier coatings(TBCs)in gas turbine engines are used in expressly harsh environments;thus,assessing TBC integrity status is critical for safety and reliability.However,traditional periodic maintenance involves visual inspections of the TBCs,requiring the gas turbine to be decommissioned and partially dismantled.Most importantly,tiny defects or internal damages that easily cause coating failure cannot be identified.In this work,a new nondestructive evaluation(NDE)technique of TBCs based on quantum dot(QD)anion exchange is first explored internationally.By exchanging anions between the Cl ions and the CsPbBr_(3) QDs,the degrees of salt corrosion of the TBCs are evaluated.The resultant NDE technique shows that the colour of the TBCs obviously changes from green to blue,accompanied by a large blueshift(~100 nm)of the photoluminescence(PL)peak position.In addition,the relationship between the PL peak position and coating thermophysical properties indicates that the precision of this NDE technique may easily identify theμm-level of the thermal growth oxide(TGO)changes inside the TBCs. 展开更多
关键词 thermal barrier coatings nondestructive evaluation CsPbBr_(3)quantum dot anion exchange thermal growth oxide
原文传递
Interchain doubly-bridged α-helical peptides for the development of protein binders
6
作者 yaqi chen Jingjing Liang +3 位作者 Tao Li Ping Lin Yibing Zhao Chuanliu Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第4期924-928,共5页
Constrained peptide scaffolds that are tolerant to extensive sequence manipulation and amenable to bioactive peptide design are of great value to the development of novel protein binders and peptide therapeutics. In t... Constrained peptide scaffolds that are tolerant to extensive sequence manipulation and amenable to bioactive peptide design are of great value to the development of novel protein binders and peptide therapeutics. In this work, we reported strategies for the design and synthesis of a kind of novel interchain doubly-bridged α-helical peptides, involving mutual stabilization of two peptide α-helices linked by two interchain bisthioether crosslinkers. By taking a MDM2-binding peptide with an α-helical tendency as a model, we demonstrated that α-helical dimers with significantly improved structural and proteolytic stability and nanomolar binding affinity to the target protein can be obtained. By modulating the surface charges on the dimeric peptides, we also obtained a dimeric peptide with enhanced cellpenetrating capability, which can efficiently penetrate into cancer cells and inhibit the intracellular MDM2-p53 interactions to promote cell apoptosis. Considering that many proteins take a surface α-helical segment as the binding motif to mediate their interactions with other proteins, we believe that our interchain doubly-bridged α-helical peptides would provide a promising scaffold for the development of novel high-affinity protein binders. 展开更多
关键词 PEPTIDES α-Helices PROTEIN binders Bisthioether crosslinkers MDM2-P53 INTERACTIONS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部