BACKGROUND: Previous studies of attentional control have focused primarily on pre-cue control of attentional cue and direction. OBJECTIVE: To measure the differences in electrical activity of brain cells while proce...BACKGROUND: Previous studies of attentional control have focused primarily on pre-cue control of attentional cue and direction. OBJECTIVE: To measure the differences in electrical activity of brain cells while processing pre-cue and post-cue compound stimuli, and to explore brain electrical activity during global and local processing of compound stimuli according to electroencephalogram (EEG) recordings. DESIGN, TIME AND SETTING: A within-subject design study was performed at the School of Psychology, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China from March to May 2006. PARTICIPANTS: A total of 30 healthy, undergraduate students, aged 17-24 years, comprising 12 males and 18 females, were voluntarily enrolled from Beijing Normal University. Subjects exhibited normal or corrected-to-normal visual acuity. No significant non signal wave drift was detected during testing. METHODS: A total of 30 subjects were subjected to pre-cue and post-cue compound stimulus processing using event-related potential and EEG recordings. MAIN OUTCOME MEASURES: Evoked potential was recorded in different brain regions utilizing event-related potential to observe hemispheric symmetry, cue consistency and global-local features. RESULTS: Pre-cue compound stimuli resulted in hemispheric asymmetry for early wave (N1) and late wave (P3) in anterior brain regions. Early- and late-wave induced hemispheric asymmetry for electrode points (O1, 02, P3, P4, Pz, F3, F4, F7, F8, Fz, FP1, FP2, T7, TS, C3, C4, and Cz) during processing of pre-cue compound stimuli (P 〈 0.05). Post-cue compound stimuli did not induce hemispheric asymmetry of brain waves induced by the above-described electrode points. No significant differences in global and local responses were determined during processing of post-cue compound stimuli. Under pre-cue conditions, significant differences were observed in N1 and P3 in the above-mentioned electrode points (P 〈 0.05). However, under post-cue conditions, no significant differences were observed in N1 and P3 using the above-mentioned electrode points. Significant differences in early waves (N1 and P1) using the above-mentioned electrode points were detected between anterior and posterior brain regions, regardless of consistent or inconsistent, large or small letters (P 〈 0.05). CONCLUSION: Cue location effected mechanisms underlying global and local processing of compound stimuli. Pre- or post-cue conditions resulted in differences in hemispheric symmetry, cue consistency, and global and local features. Under pre-cue conditions, hemispheric dominance was detected in global and local processing following compound stimuli. Under post-cue conditions, hemispheric dominance was not determined.展开更多
We successfully overcome the problem of cross-talk in multiplexed metasurface design and realize the multiplexed metasurface with five printing images in both theoretical and experimental aspects,by employing the cohe...We successfully overcome the problem of cross-talk in multiplexed metasurface design and realize the multiplexed metasurface with five printing images in both theoretical and experimental aspects,by employing the coherent pixel design considering coherent superposition of all the sub-elements.Compared with most previous studies where the integrated printing images were usually no more than three,our study shows obvious improvement.More importantly,in our approach all the sub-elements,which were crystalline silicon nanobricks with the size of 320×80×230 nm^3,were arranged in a square space of 1.45×1.45μm^2 following the closest packing way,enabling our multiplexed metasurface to have a potential of effective physical information capacity of printing image reaching the optical diffraction limit.Our study not only enlarges the information capacity of metasurfaces by expanding the integrated number of printing image in one metasurface,but also can promote metasurface applications in various fields such as information storage and encoding.展开更多
Due to its unbounded and orthogonal modes,the orbital angular momentum(OAM)is regarded as a key optical degree of freedom(DoF)for future information processing with ultra-high capacity and speed.Although the manipulat...Due to its unbounded and orthogonal modes,the orbital angular momentum(OAM)is regarded as a key optical degree of freedom(DoF)for future information processing with ultra-high capacity and speed.Although the manipulation of OAM based on metasurfaces has brought about great achievements in various fields,such manipulation currently remains at single-DoF level,which means the multiplexed manipulation of OAM with other optical DoFs is still lacking,greatly hampering the application of OAM beams and advancement of metasurfaces.In order to overcome this challenge,we propose the idea of multiplexed coherent pixel(MCP)for metasurfaces.This approach enables the manipulation of arbitrary complex-amplitude under incident lights of both plane and OAM waves,on the basis of which we have realized the multiplexed DoF control of OAM and wavelength.As a result,the MCP method expands the types of incident lights which can be simultaneously responded by metasurfaces,enriches the information processing capability of metasurfaces,and creates applications of information encryption and OAM demultiplexer.Our findings not only provide means for the design of high-security and high-capacity metasurfaces,but also raise the control and application level of OAM,offering great potential for multifunctional nanophotonic devices in the future.展开更多
Polarization as an important degree of freedom for light plays a key role in optics.Structured beams with controlled polarization profles have diverse applications,such as information encoding,display,medical and biol...Polarization as an important degree of freedom for light plays a key role in optics.Structured beams with controlled polarization profles have diverse applications,such as information encoding,display,medical and biological imaging,and manipulation of microparticles.However,conventional polarization optics can only realize two-dimensional polarization structures in a transverse plane.The emergent ultrathin optical devices consisting of planar nanostructures,so-called metasurfaces,have shown much promise for polarization manipulation.Here we propose and experimentally demonstrate color-selective three-dimensional(3D)polarization structures with a single metasurface.The geometric metasurfaces are designed based on color and phase multiplexing and polarization rotation,creating various 3D polarization knots.Remarkably,different 3D polarization knots in the same observation region can be achieved by controlling the incident wavelengths,providing unprecedented polarization control with color information in 3D space.Our research findings may be of interest to many practical applications such as vector beam generation,virtual reality,volumetric displays,security,and anti-counterfeiting.展开更多
Photonic structures with optical resonances beyond a single controllable mode are strongly desired for enhancing light±matter interactions and bringing about advanced photonic devices. However, the realization of...Photonic structures with optical resonances beyond a single controllable mode are strongly desired for enhancing light±matter interactions and bringing about advanced photonic devices. However, the realization of effective multimodal photonic structures has been restricted by the limited tunable range of mode manipulation, the spatial dispersions of electric fields or the polarization-dependent excitations. To overcome these limitations, we create a dualmode metasurface by integrating the plasmonic surface lattice resonance and the gap plasmonic modes;this metasurface offers a widely tunable spectral range, good overlap in the spatial distribution of electric fields, and polarization independence of excitation light. To show that such dual-mode metasurfaces are versatile platforms for enhancing light±matter interactions, we experimentally demonstrate a significant enhancement of second-harmonic generation using our design, with a conversion efficiency of 1±3 orders of magnitude larger than those previously obtained in plasmonic systems. These results may inspire new designs for functional multimodal photonic structures.展开更多
Objectives:This work intended to identify candidate C2H2 genes participating in low-temperature conditioning(LTC)-alleviated postharvest chilling injury of peach fruit.Materials and Methods:For LTC treatment,fruit wer...Objectives:This work intended to identify candidate C2H2 genes participating in low-temperature conditioning(LTC)-alleviated postharvest chilling injury of peach fruit.Materials and Methods:For LTC treatment,fruit were pre-stored at 10℃for 5 d and then transferred to 0℃storage.Fruit firmness was measured by a hardness tester.H_(2)O_(2)content was determined by luminosity measurement model using a multifunctional enzyme labeler.Identification of C2H2 family members was performed by HMMSCAN according to peach genome.The cis-acting element of gene promoters was analyzed using the Plant CARE website.Weighted gene coexpression network analysis(WGCNA)was performed by the WGCNA package in the BMK Cloud platform.Results:LTC treatment decreased flesh browning rate and H_(2)O_(2)production of‘Beijing No.9’peach.Transcription factor identification of differentially expressed genes in 0℃and the LTC treatment indicated that peach C2H2 participated in the regulation of chilling injury.A total of 47 C2H2 genes were identified based on peach genome.Real-time quantitative polymerase chain reaction(qRT-PCR),phylogenetic analysis and promoter cis-acting element analysis revealed that ZFP21 was involved in the regulation of LTC-alleviated chilling injury in peach.WGCNA and dual luciferase assay suggested that ZFP21 participated in LTC-alleviated chilling injury by downregulating the expression of reactive oxygen species-related genes Rboh.Conclusions:Our investigation,based on genome and RNA-seq,revealed that ZFP21 was involved in LTC treatment-alleviated chilling injury of peach fruit.This work is useful for the identification of peach cold tolerance-related genes and the study of C2H2 family in peach.展开更多
基金the Planning Program Foundation of Application and Experimental Psychology of Beijing Key Laboratory from 2008 to 2009.No.JD100270541
文摘BACKGROUND: Previous studies of attentional control have focused primarily on pre-cue control of attentional cue and direction. OBJECTIVE: To measure the differences in electrical activity of brain cells while processing pre-cue and post-cue compound stimuli, and to explore brain electrical activity during global and local processing of compound stimuli according to electroencephalogram (EEG) recordings. DESIGN, TIME AND SETTING: A within-subject design study was performed at the School of Psychology, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China from March to May 2006. PARTICIPANTS: A total of 30 healthy, undergraduate students, aged 17-24 years, comprising 12 males and 18 females, were voluntarily enrolled from Beijing Normal University. Subjects exhibited normal or corrected-to-normal visual acuity. No significant non signal wave drift was detected during testing. METHODS: A total of 30 subjects were subjected to pre-cue and post-cue compound stimulus processing using event-related potential and EEG recordings. MAIN OUTCOME MEASURES: Evoked potential was recorded in different brain regions utilizing event-related potential to observe hemispheric symmetry, cue consistency and global-local features. RESULTS: Pre-cue compound stimuli resulted in hemispheric asymmetry for early wave (N1) and late wave (P3) in anterior brain regions. Early- and late-wave induced hemispheric asymmetry for electrode points (O1, 02, P3, P4, Pz, F3, F4, F7, F8, Fz, FP1, FP2, T7, TS, C3, C4, and Cz) during processing of pre-cue compound stimuli (P 〈 0.05). Post-cue compound stimuli did not induce hemispheric asymmetry of brain waves induced by the above-described electrode points. No significant differences in global and local responses were determined during processing of post-cue compound stimuli. Under pre-cue conditions, significant differences were observed in N1 and P3 in the above-mentioned electrode points (P 〈 0.05). However, under post-cue conditions, no significant differences were observed in N1 and P3 using the above-mentioned electrode points. Significant differences in early waves (N1 and P1) using the above-mentioned electrode points were detected between anterior and posterior brain regions, regardless of consistent or inconsistent, large or small letters (P 〈 0.05). CONCLUSION: Cue location effected mechanisms underlying global and local processing of compound stimuli. Pre- or post-cue conditions resulted in differences in hemispheric symmetry, cue consistency, and global and local features. Under pre-cue conditions, hemispheric dominance was detected in global and local processing following compound stimuli. Under post-cue conditions, hemispheric dominance was not determined.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11974437 and 61675237)the Guangdong Natural Science Funds for Distinguished Young Scholars(Grant No.2017B030306007)+1 种基金the Guangdong Special Support Program(Grant No.2017TQ04C487)the Pearl River S&T Nova Program of Guangzhou(Grant No.201806010033)。
文摘We successfully overcome the problem of cross-talk in multiplexed metasurface design and realize the multiplexed metasurface with five printing images in both theoretical and experimental aspects,by employing the coherent pixel design considering coherent superposition of all the sub-elements.Compared with most previous studies where the integrated printing images were usually no more than three,our study shows obvious improvement.More importantly,in our approach all the sub-elements,which were crystalline silicon nanobricks with the size of 320×80×230 nm^3,were arranged in a square space of 1.45×1.45μm^2 following the closest packing way,enabling our multiplexed metasurface to have a potential of effective physical information capacity of printing image reaching the optical diffraction limit.Our study not only enlarges the information capacity of metasurfaces by expanding the integrated number of printing image in one metasurface,but also can promote metasurface applications in various fields such as information storage and encoding.
基金the National Key R&D Program of China(2021YFA1400804)the National Natural Science Foundations of China(12222415 and 11974437).
文摘Due to its unbounded and orthogonal modes,the orbital angular momentum(OAM)is regarded as a key optical degree of freedom(DoF)for future information processing with ultra-high capacity and speed.Although the manipulation of OAM based on metasurfaces has brought about great achievements in various fields,such manipulation currently remains at single-DoF level,which means the multiplexed manipulation of OAM with other optical DoFs is still lacking,greatly hampering the application of OAM beams and advancement of metasurfaces.In order to overcome this challenge,we propose the idea of multiplexed coherent pixel(MCP)for metasurfaces.This approach enables the manipulation of arbitrary complex-amplitude under incident lights of both plane and OAM waves,on the basis of which we have realized the multiplexed DoF control of OAM and wavelength.As a result,the MCP method expands the types of incident lights which can be simultaneously responded by metasurfaces,enriches the information processing capability of metasurfaces,and creates applications of information encryption and OAM demultiplexer.Our findings not only provide means for the design of high-security and high-capacity metasurfaces,but also raise the control and application level of OAM,offering great potential for multifunctional nanophotonic devices in the future.
基金the Engineering and Physical Sciences Research Council(EP/P029892/1)the Leverhulme Trust(RPG-2021-145)the Royal Society International Exchanges(IES\R3\193046).
文摘Polarization as an important degree of freedom for light plays a key role in optics.Structured beams with controlled polarization profles have diverse applications,such as information encoding,display,medical and biological imaging,and manipulation of microparticles.However,conventional polarization optics can only realize two-dimensional polarization structures in a transverse plane.The emergent ultrathin optical devices consisting of planar nanostructures,so-called metasurfaces,have shown much promise for polarization manipulation.Here we propose and experimentally demonstrate color-selective three-dimensional(3D)polarization structures with a single metasurface.The geometric metasurfaces are designed based on color and phase multiplexing and polarization rotation,creating various 3D polarization knots.Remarkably,different 3D polarization knots in the same observation region can be achieved by controlling the incident wavelengths,providing unprecedented polarization control with color information in 3D space.Our research findings may be of interest to many practical applications such as vector beam generation,virtual reality,volumetric displays,security,and anti-counterfeiting.
基金supported by the National Key R&D Program of China (2016YFA0301300)the National Natural Science Foundation of China (11974437 and 91750207)+6 种基金the Key-Area Research and Development Program of Guangdong Province (2018B030329001)Guangdong Special Support Program (2017TQ04C487)Guangdong Natural Science Funds for Distinguished Young Scholars (2017B030306007)Guangdong Natural Science Funds (2020A0505140004)Pearl River S&T Nova Program of Guangzhou (201806010033)the Open Fund of IPOC (BUPT) (IPOC2019A003)the Fundamental Research Funds for the Central Universities (20lgzd30)。
文摘Photonic structures with optical resonances beyond a single controllable mode are strongly desired for enhancing light±matter interactions and bringing about advanced photonic devices. However, the realization of effective multimodal photonic structures has been restricted by the limited tunable range of mode manipulation, the spatial dispersions of electric fields or the polarization-dependent excitations. To overcome these limitations, we create a dualmode metasurface by integrating the plasmonic surface lattice resonance and the gap plasmonic modes;this metasurface offers a widely tunable spectral range, good overlap in the spatial distribution of electric fields, and polarization independence of excitation light. To show that such dual-mode metasurfaces are versatile platforms for enhancing light±matter interactions, we experimentally demonstrate a significant enhancement of second-harmonic generation using our design, with a conversion efficiency of 1±3 orders of magnitude larger than those previously obtained in plasmonic systems. These results may inspire new designs for functional multimodal photonic structures.
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2021QC100)Open Project Foundation of Shandong(Linyi)Institute of Modern Agriculture,Zhejiang University(No.ZDNY-2020-FWLY02002)+2 种基金Modern Agricultural Industry Technology System of Shandong Province(No.SDAIT-06-08)Innovation and Entrepreneurship Project for College Students(X202210452106)the Innovation Team of Youth Technology Project of High School in Shandong Province(2021KJ055).
文摘Objectives:This work intended to identify candidate C2H2 genes participating in low-temperature conditioning(LTC)-alleviated postharvest chilling injury of peach fruit.Materials and Methods:For LTC treatment,fruit were pre-stored at 10℃for 5 d and then transferred to 0℃storage.Fruit firmness was measured by a hardness tester.H_(2)O_(2)content was determined by luminosity measurement model using a multifunctional enzyme labeler.Identification of C2H2 family members was performed by HMMSCAN according to peach genome.The cis-acting element of gene promoters was analyzed using the Plant CARE website.Weighted gene coexpression network analysis(WGCNA)was performed by the WGCNA package in the BMK Cloud platform.Results:LTC treatment decreased flesh browning rate and H_(2)O_(2)production of‘Beijing No.9’peach.Transcription factor identification of differentially expressed genes in 0℃and the LTC treatment indicated that peach C2H2 participated in the regulation of chilling injury.A total of 47 C2H2 genes were identified based on peach genome.Real-time quantitative polymerase chain reaction(qRT-PCR),phylogenetic analysis and promoter cis-acting element analysis revealed that ZFP21 was involved in the regulation of LTC-alleviated chilling injury in peach.WGCNA and dual luciferase assay suggested that ZFP21 participated in LTC-alleviated chilling injury by downregulating the expression of reactive oxygen species-related genes Rboh.Conclusions:Our investigation,based on genome and RNA-seq,revealed that ZFP21 was involved in LTC treatment-alleviated chilling injury of peach fruit.This work is useful for the identification of peach cold tolerance-related genes and the study of C2H2 family in peach.