SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ...SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.展开更多
LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nan...LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility.Besides,graphene can serve as supporting materials for LiBH_(4)catalysts and also destabilize LiBH_(4)via interfacial reaction.However,graphene has never been used alone as a frame material for nanoconfining LiBH_(4).In this study,graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH_(4),and the nanoconfinement effect of graphene was revealed.After loading 70 wt%of LiBH_(4) and mechanically compressed at 350 MPa,8.0 wt% of H2 can be released within 100 min at 320C,corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L^(-1)ever reported.Thanks to the nanoconfinement of graphene,the rate-limiting step of dehydrogenation of nanoconfined LiBH_(4) was changed and its apparent activation energy of the dehydrogenation(107.3 kJ mol^(-1))was 42%lower than that of pure LiBH_(4).Moreover,the formation of the intermediate Li_(2)B_(12)H_(12) was effectively inhibited,and the stable nanoconfined structure enhanced the reversibility of LiBH_(4).This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials.展开更多
The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS...The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS)as the electrolyte additive is proposed to facilitate the generation of stable CEI on NCM811 cathode surface and eliminate H_(2)O and HF in the electrolyte at the same time,which boosts the cycling performance of Li||NCM811 battery up to 1000 or 500 cycles with 4.5 V cut-off voltage at 25 or 60℃.展开更多
Solid-state batteries(SSBs)have received widespread attention with their high safety and high energy density characteristics.However,solid-solid contacts in the internal electrode material and the electrode material/s...Solid-state batteries(SSBs)have received widespread attention with their high safety and high energy density characteristics.However,solid-solid contacts in the internal electrode material and the electrode material/solid electrolyte(SE)interfaces,as well as the severe electrochemo-mechanical effects caused by the internal stress due to the volume change of the active material,these problems hinder ion/electron transport within the SSBs,which significantly deteriorates the electrochemical performance.Applying fabrication pressures and stack pressures are effective measures to improve solid-solid contact and solve electrochemo-mechanical problems.Herein,the influences of different pressures on cathode material,anode material,SEs,and electrode/SEs interface are briefly summarized from the perspective of interface ion diffusion,transmission of electrons and ions in internal particles,current density and ion diffusion kinetics,and the volume changes of Li^(+) stripping/plating based on two physical contact models,and point out the direction for the future research direction of SSBs and advancing industrialization by building the relationship between pressures and SSBs electrochemistry.展开更多
Nanoscaled catalysts have attracted much more attention due to their more abundant active sites and better dispersion than their bulky counterparts.In this work,VH_(x) nanoparticles smaller than 10 nm in average size ...Nanoscaled catalysts have attracted much more attention due to their more abundant active sites and better dispersion than their bulky counterparts.In this work,VH_(x) nanoparticles smaller than 10 nm in average size are successfully synthesized by a simple solid-state ball milling coupled with THF washing process,which are proved to be highly effective in enhancing the hydrogen absorption/desorption kinetics of MgH_(2) at moderate temperatures.The nano-VH_(x)-modified MgH_(2) releases hydrogen from 182℃,which is 88℃ lower than additive-free MgH_(2).The release of hydrogen amounts to 6.3 wt%H within 10 min at 230℃ and 5.6 wt%H after 30 min at 215℃ with initial vacuum.More importantly,the dehydro-genated MgH_(2)+10 wt.%nano-VH_(x) rapidly absorbs 5.2 wt%H within 3 min at 50℃ under 50 bar H_(2).It even takes up 4.3 wt%H within 30 min at room temperature(25℃)under 10 bar H_(2),exhibiting supe-rior hydrogenation kinetics to most of the previous reports.Mechanistic analyzes disclose the reversible transformation between V and V-H species during the hydrogen desorption-absorption process.The ho-mogeneously distributed V-based species is believed to act as hydrogen pump and nucleation sites for MgH_(2) and Mg,respectively,thus triggering fast hydrogenation/dehydrogenation kinetics.展开更多
The storage of hydrogen in a compact,safe and cost-effective manner can be one of the key enabling technologies to power a more sustainable society.Magnesium hydride(MgH_(2))has attracted strong research interest as a...The storage of hydrogen in a compact,safe and cost-effective manner can be one of the key enabling technologies to power a more sustainable society.Magnesium hydride(MgH_(2))has attracted strong research interest as a hydrogen carrier because of its high gravimetric and volumetric hydrogen densities.However,the practical use of MgH_(2)for hydrogen storage has been limited due to high operation temperatures and sluggish kinetics.Catalysis is of crucial importance for the enhancement of hydrogen cycling kinetics of Mg/MgH_(2)and considerable work has been focused on designing,fabricating and optimizing catalysts.This review covers the recent advances in catalyzed Mg-based hydrogen storage materials.The fundamental properties and the syntheses of MgH_(2)as a hydrogen carrier are first briefly reviewed.After that,the general catalysis mechanisms and the catalysts developed for hydrogen storage in MgH_(2)are summarized in detail.Finally,the challenges and future research focus are discussed.Literature studies indicate that transition metals,rare-earth metals and their compounds are quite effective in catalyzing hydrogen storage in Mg/MgH_(2).Most metal-containing compounds were converted in situ to elemental metal or their magnesium alloys,and their particle sizes and dispersion affect their catalytic activity.The in-situ construction of catalyzed ultrasmall Mg/MgH_(2)nanostructures(<10 nm in size)is believed to be the future research focus.These important insights will help with the design and development of high-performance catalysts for hydrogen storage in Mg/MgH_(2).展开更多
Rechargeable lithium metal batteries(LMBs)meet the demands of high-energy applications in electric vehicles and truck transportation[1-4].Yet,the low coulombic efficiency(CE)hinders the widespread application of Li an...Rechargeable lithium metal batteries(LMBs)meet the demands of high-energy applications in electric vehicles and truck transportation[1-4].Yet,the low coulombic efficiency(CE)hinders the widespread application of Li anode,which is closely related to the electrolytes[5-7].The CE of traditional electrolytes for Li anodes is closely related to the speciation of the plated Li during cycling,where fluorinated solvents with weakly solvated Li+usually exhibit larger Li deposition particles with higher CE[8,9].But the relationship between the morphological difference and CE in different electrolytes is less studied[10,11].There are three relationships between the deposition kinetics of interface Li and the cycling of the battery,no correlation,positive correlation[12,13],and negative correlation[14,15]have been reported on active Li anodes,which neglects the reactivity of Li metal in kinetics.Solid electrolyte interphase(SEl)was formed by the electrolytes reacting with Li,and Li deposition can occur on the Li/SEl interface or the fresh Li/electrolyte interface[16,17].Each pathway has different deposition kinetics.Therefore,in order to understand the relationship between electrolyte kinetics and lithium deposition morphology,it is important to solve the kinetics of the two ways in the electrolyte.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51971065Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-07-E00028。
文摘SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.
基金supported by National Key Research and Development Program of China(2021YFB4000602)National Natural Science Foundation of PR China(Nos.52071287,52072342,52271227)+3 种基金National Outstanding Youth Foundation of China(No.52125104)Natural Science Foundation of Zhejiang Province,PR China(No.LZ23E010002)Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20220456)Young Star Project of Science and Technology of Shaanxi Province(2022KJXX-43).
文摘LiBH_(4)with high hydrogen storage density,is regarded as one of the most promising hydrogen storage materials.Nevertheless,it suffers from high dehydrogenation temperature and poor reversibility for practical use.Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility.Besides,graphene can serve as supporting materials for LiBH_(4)catalysts and also destabilize LiBH_(4)via interfacial reaction.However,graphene has never been used alone as a frame material for nanoconfining LiBH_(4).In this study,graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH_(4),and the nanoconfinement effect of graphene was revealed.After loading 70 wt%of LiBH_(4) and mechanically compressed at 350 MPa,8.0 wt% of H2 can be released within 100 min at 320C,corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L^(-1)ever reported.Thanks to the nanoconfinement of graphene,the rate-limiting step of dehydrogenation of nanoconfined LiBH_(4) was changed and its apparent activation energy of the dehydrogenation(107.3 kJ mol^(-1))was 42%lower than that of pure LiBH_(4).Moreover,the formation of the intermediate Li_(2)B_(12)H_(12) was effectively inhibited,and the stable nanoconfined structure enhanced the reversibility of LiBH_(4).This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials.
基金the support from the National Natural Science Foundation of China(Grant No.51971090 and U21A20311)。
文摘The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS)as the electrolyte additive is proposed to facilitate the generation of stable CEI on NCM811 cathode surface and eliminate H_(2)O and HF in the electrolyte at the same time,which boosts the cycling performance of Li||NCM811 battery up to 1000 or 500 cycles with 4.5 V cut-off voltage at 25 or 60℃.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52201277).
文摘Solid-state batteries(SSBs)have received widespread attention with their high safety and high energy density characteristics.However,solid-solid contacts in the internal electrode material and the electrode material/solid electrolyte(SE)interfaces,as well as the severe electrochemo-mechanical effects caused by the internal stress due to the volume change of the active material,these problems hinder ion/electron transport within the SSBs,which significantly deteriorates the electrochemical performance.Applying fabrication pressures and stack pressures are effective measures to improve solid-solid contact and solve electrochemo-mechanical problems.Herein,the influences of different pressures on cathode material,anode material,SEs,and electrode/SEs interface are briefly summarized from the perspective of interface ion diffusion,transmission of electrons and ions in internal particles,current density and ion diffusion kinetics,and the volume changes of Li^(+) stripping/plating based on two physical contact models,and point out the direction for the future research direction of SSBs and advancing industrialization by building the relationship between pressures and SSBs electrochemistry.
基金supported by the National Out-standing Youth Foundation of China (No.52125104)the Natural Science Foundation of Zhejiang Province (No.LD21E010002)+2 种基金the National Natural Science Foundation of China (No.52001277)the Fundamental Research Funds for the Central Universities (No.2021FZZX001-09)the National Youth Top-Notch Talent Support Program.
文摘Nanoscaled catalysts have attracted much more attention due to their more abundant active sites and better dispersion than their bulky counterparts.In this work,VH_(x) nanoparticles smaller than 10 nm in average size are successfully synthesized by a simple solid-state ball milling coupled with THF washing process,which are proved to be highly effective in enhancing the hydrogen absorption/desorption kinetics of MgH_(2) at moderate temperatures.The nano-VH_(x)-modified MgH_(2) releases hydrogen from 182℃,which is 88℃ lower than additive-free MgH_(2).The release of hydrogen amounts to 6.3 wt%H within 10 min at 230℃ and 5.6 wt%H after 30 min at 215℃ with initial vacuum.More importantly,the dehydro-genated MgH_(2)+10 wt.%nano-VH_(x) rapidly absorbs 5.2 wt%H within 3 min at 50℃ under 50 bar H_(2).It even takes up 4.3 wt%H within 30 min at room temperature(25℃)under 10 bar H_(2),exhibiting supe-rior hydrogenation kinetics to most of the previous reports.Mechanistic analyzes disclose the reversible transformation between V and V-H species during the hydrogen desorption-absorption process.The ho-mogeneously distributed V-based species is believed to act as hydrogen pump and nucleation sites for MgH_(2) and Mg,respectively,thus triggering fast hydrogenation/dehydrogenation kinetics.
基金the financial support received from the National Key R&D Program of China(No.2022YFB3803700)the National Outstanding Youth Foundation of China(No.52125104)+3 种基金the Natural Science Foundation of Zhejiang Province(No.LD21E010002)the National Natural Science Foundation of China(Nos.52001277 and U22A20120)the Fundamental Research Funds for the Central Universities(Nos.2021FZZX001-09 and 226-2022-00246)the National Youth Top-Notch Talent Support Program.
文摘The storage of hydrogen in a compact,safe and cost-effective manner can be one of the key enabling technologies to power a more sustainable society.Magnesium hydride(MgH_(2))has attracted strong research interest as a hydrogen carrier because of its high gravimetric and volumetric hydrogen densities.However,the practical use of MgH_(2)for hydrogen storage has been limited due to high operation temperatures and sluggish kinetics.Catalysis is of crucial importance for the enhancement of hydrogen cycling kinetics of Mg/MgH_(2)and considerable work has been focused on designing,fabricating and optimizing catalysts.This review covers the recent advances in catalyzed Mg-based hydrogen storage materials.The fundamental properties and the syntheses of MgH_(2)as a hydrogen carrier are first briefly reviewed.After that,the general catalysis mechanisms and the catalysts developed for hydrogen storage in MgH_(2)are summarized in detail.Finally,the challenges and future research focus are discussed.Literature studies indicate that transition metals,rare-earth metals and their compounds are quite effective in catalyzing hydrogen storage in Mg/MgH_(2).Most metal-containing compounds were converted in situ to elemental metal or their magnesium alloys,and their particle sizes and dispersion affect their catalytic activity.The in-situ construction of catalyzed ultrasmall Mg/MgH_(2)nanostructures(<10 nm in size)is believed to be the future research focus.These important insights will help with the design and development of high-performance catalysts for hydrogen storage in Mg/MgH_(2).
文摘Rechargeable lithium metal batteries(LMBs)meet the demands of high-energy applications in electric vehicles and truck transportation[1-4].Yet,the low coulombic efficiency(CE)hinders the widespread application of Li anode,which is closely related to the electrolytes[5-7].The CE of traditional electrolytes for Li anodes is closely related to the speciation of the plated Li during cycling,where fluorinated solvents with weakly solvated Li+usually exhibit larger Li deposition particles with higher CE[8,9].But the relationship between the morphological difference and CE in different electrolytes is less studied[10,11].There are three relationships between the deposition kinetics of interface Li and the cycling of the battery,no correlation,positive correlation[12,13],and negative correlation[14,15]have been reported on active Li anodes,which neglects the reactivity of Li metal in kinetics.Solid electrolyte interphase(SEl)was formed by the electrolytes reacting with Li,and Li deposition can occur on the Li/SEl interface or the fresh Li/electrolyte interface[16,17].Each pathway has different deposition kinetics.Therefore,in order to understand the relationship between electrolyte kinetics and lithium deposition morphology,it is important to solve the kinetics of the two ways in the electrolyte.